摘要。肽基 - 丙酰基异构酶NIMA-相互作用1(PIN1)是一种特定的磷酸化丝氨酸/苏氨酸 - 磷酸 - 磷酸顺式反应异构酶,参与调节各种生理和病理过程,包括细胞周期进展,扩增和凋亡。PIN1在肿瘤发生和肿瘤发育中起关键作用,它通过调节细胞周期,信号通路和肿瘤抑制器的功能来促进癌细胞的增殖和转移。PIN1的上调表达与几种类型的癌症的预后不良密切相关。因此,PIN1可能具有潜在的潜在潜在的肿瘤诊断和预后的潜在生物标志物,以及有希望的抗癌靶标。本综述的目的是讨论肿瘤中PIN1的机制以及该领域的最新研究进展。
高保真计算流体力学模拟通常与大量计算需求相关,而每一代超级计算机的出现都对计算能力提出了更高的要求。然而,需要进行大量的研究工作才能释放基于日益复杂的架构的前沿系统(目前称为前百亿亿次级系统)的计算能力。在本文中,我们介绍了在计算力学代码 Alya 中实现的方法。我们详细描述了为充分利用不同级别的并行性而实施的并行化策略,以及一种用于有效利用异构 CPU/GPU 架构的新型共执行方法。后者基于具有动态负载平衡机制的多代码共执行方法。已针对使用 NVIDIA Volta V100 GPU 加速的 POWER9 架构上的飞机模拟对所有提出的策略的性能进行了评估。
摘要 — 量子计算机为特定的计算密集型经典问题提供了更快的解决方案。然而,构建容错量子计算机架构具有挑战性,需要集成多个量子位和优化的信号路由,同时保持其量子相干性。由于各种元件之间的材料和热力学不匹配,在平面单片器件架构中实验实现具有多种功能组件的量子计算机具有挑战性。此外,它需要复杂的控制和路由,导致寄生模式和量子位相干性降低。因此,可扩展的中介层架构对于在保持量子位相干性的同时合并和互连复杂芯片内的不同功能至关重要。因此,异构集成是扩展量子位技术的最佳解决方案。我们提出了一种异构集成量子芯片光电子中介层作为高密度可扩展量子位架构的解决方案。我们的技术可实现大批量生产,并为片上、芯片到芯片以及低温到外界的互连提供新颖的光学 I/O 解决方案。
Tommaso Jucker 1 | FabianJörgFischer1 | JérômeChave2.3 | David A. Coomes 4 |约翰·卡斯珀森(John Caspersen)5 | Arshad Ali 6 | Grace Jopaul Loubota Panzou 7.8 | Ted R. Feldpousch 9 |丹尼尔·福特(Daniel Falster)10 | Vladimir A. Usoltsev 11,12 | Stephen Adu-Bredu 13 | Luciana F. Alves 14 | Mohammad Aminpour 15 | Ilondoa B. Angoboy 16 | Niels P. R.天线17 | CécileAntin 18 | Yousef Askari 19 | RodrigoMuñoz20,21 | Narayanan Ayyappan 22 | Patricia Balvanera 23 | Lindsay Banin 24 | Nicolas Barbier 18 | John J.
摘要:异构网络 (HetNet) 是一种专用蜂窝平台,用于处理快速增长的预期数据流量。从通信角度来看,数据负载可以映射到通常放置在运营商网络上的能源负载。同时,可再生能源辅助网络可以减少化石燃料消耗,从而减少环境污染。本文提出了一种基于可再生能源的离网 HetNet 电源架构,该架构使用了一种新颖的能源共享模型。每个宏基站、微基站、微微基站或毫微微基站 (BS) 都使用太阳能光伏 (PV) 以及足够的储能设备。此外,宏基站和微基站还使用生物质发电机 (BG)。共置的宏基站和微基站通过端到端电阻线连接。通过权衡功耗和通信延迟,提出了一种具有睡眠机制的新型加权比例公平资源调度算法,用于非实时 (NRT) 应用。此外,针对窄带物联网 (IoT) 应用,提出的具有扩展不连续接收 (eDRX) 和省电模式 (PSM) 的算法可延长物联网设备的电池寿命。HOMER 优化软件用于执行最佳系统架构、经济和碳足迹分析,而蒙特卡罗模拟工具用于评估吞吐量和能效性能。通过孟加拉国农村地区的实际数据验证了提出的算法,从中可以看出,提出的电源架构节能、经济、可靠且环保。
SIP 正在成为新的 SOC • 模块化方法与单片方法 • 并非每个逻辑功能 (IP) 都需要在相同的工艺节点 (HI) 中进行设计 • 利用小芯片形式的 IP • 目前小芯片集成在硅中介层上;薄膜层压板正在兴起 • 包括最新的 IC 封装 2.5D、3D、FOWLP 技术 • 下一代所需的电路板设计专业知识
由于高性能商用现货 (COTS) 计算平台的技术进步,空间计算正在蓬勃发展。太空环境复杂且具有挑战性,具有尺寸、重量、功率和时间限制、通信限制和辐射效应。本论文提出的研究旨在研究和支持在空间系统中使用 COTS 异构计算平台进行智能机载数据处理。我们研究在同一芯片上至少有一个中央处理器 (CPU) 和一个图形处理单元 (GPU) 的平台。本论文提出的研究的主要目标有两个。首先,研究异构计算平台,提出一种解决方案来应对空间系统中的上述挑战。其次,使用新颖的调度技术补充所提出的解决方案,用于在恶劣环境(如太空)中在 COTS 异构平台上运行的实时应用程序。所提出的解决方案基于考虑使用并行任务段的替代执行的系统模型。虽然将并行段卸载到并行计算单元(如 GPU)可以改善大多数应用程序的最佳执行时间,但由于过度使用 GPU,它可能会延长某些应用程序中任务的响应时间。因此,使用所提出的任务模型是减少任务响应时间和提高系统可调度性的关键。基于服务器的调度技术通过保证 CPU 上并行段的执行时隙来支持所提出的任务模型。我们的实验评估表明,与应用程序的静态分配相比,所提出的分配可以将实时系统的可调度任务集数量增加高达 90%。我们还提出了一种使用基于服务器的调度和所提出的任务模型的动态分配方法,该方法可以将可调度性提高高达 16%。最后,本文提出了一个模拟工具,支持设计人员使用所提出的任务模型选择异构处理单元,同时考虑处理单元的不同辐射耐受性水平。
• 扩大美国在半导体技术领域的领导地位,为未来的应用和行业奠定基础,并加强美国半导体制造生态系统。 • 通过共享设施、数字资产和技术专长,大幅减少从设计理念到商业化的时间和成本,从而推动半导体和半导体相关产品的设计、原型设计、制造、封装和扩展。 • 建立和维持半导体劳动力发展生态系统。NSTC 将作为协调机构和卓越中心,扩大包括科学家、工程师和技术人员在内的技术劳动力规模。NSTC 劳动力计划将重点关注招募、培训和再培训半导体劳动力,包括传统上在行业中代表性不足的群体。
高保真计算流体力学模拟通常与大量计算需求相关,而每一代超级计算机的出现都对计算能力提出了更高的要求。然而,需要进行大量的研究工作才能释放基于日益复杂的架构的前沿系统(目前称为前百亿亿次级系统)的计算能力。在本文中,我们介绍了计算力学代码 Alya 中实现的方法。我们详细描述了为充分利用不同并行级别而实施的并行化策略,以及一种用于有效利用异构 CPU/GPU 架构的新型共执行方法。后者基于具有动态负载平衡机制的多代码共执行方法。已针对使用 NVIDIA Volta V100 GPU 加速的 POWER9 架构上的飞机模拟对所有提出的策略的性能进行了评估。
1 1麻醉学系,高考尔·昌甘甘吉格纪念医院和医学院,张甘格大学,木斯岛,KAOHSIUNG,R。O。C. 2 2和医学院,Chang Gung University,Kaohsiung,R。O. C. 4 Shockwave医学与组织工程中心,Kaohsiung Chang Gung Gung Memorial Hospital,Kaohsiung,R。O. C. 5 BioMedicine翻译研究所Kaohsiung,R。O. C. 7医疗管理和医学信息学,Kaohsiung医科大学,Kaohsiung,R。O. C.1麻醉学系,高考尔·昌甘甘吉格纪念医院和医学院,张甘格大学,木斯岛,KAOHSIUNG,R。O。C. 2 2和医学院,Chang Gung University,Kaohsiung,R。O. C. 4 Shockwave医学与组织工程中心,Kaohsiung Chang Gung Gung Memorial Hospital,Kaohsiung,R。O. C. 5 BioMedicine翻译研究所Kaohsiung,R。O. C. 7医疗管理和医学信息学,Kaohsiung医科大学,Kaohsiung,R。O. C.