加密擦除是一种替代,有效的安全删除技术;它在存储数据并通过删除关联的密钥来擦除数据之前,将用户数据加密。数据块上细粒的加密擦除片段对幼稚的加密擦除的不切实际存储要求;不仅需要存储每个密钥,而且每个密钥都必须擦除。最新的安全删除系统使用大型擦除存储的技术解决此问题,该技术在树层次结构中递归使用加密擦除,以将所需量的键存储量减少到单个键。不幸的是,由于其同步管理加密密钥和数据以避免数据损坏,因此现有的最新安全删除系统患有高IO潜伏期。这些现有的安全删除系统也不灵活,因为它们在块层管理加密,并且无法使用存储系统使用的文件系统抽象(例如,云存储,网络文件系统和保险丝存储系统)。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
摘要 - 批判是基于激光雷达的对象检测方法的主要挑战,因为它使自我车辆无法观察到的感兴趣区域。提出的解决此问题的解决方案来自通过车辆到所有(V2X)通信的协作感知,这要归功于在多个位置存在连接的代理(Vehilect和智能路边单位)的存在,以形成完整的场景表示。V2X合作的主要挑战是绩效 - 带宽折衷方案,它提出了两个问题(i)应该在V2X网络上交换哪些信息,以及(ii)如何融合交换的信息。当前最新的最新方法可以解决中期方法,其中传达了点云的鸟眼视图(BEV)图像,以使连接剂之间的深层相互作用,同时减少带宽消耗。在达到强大的性能时,大多数中期方法的现实部署都受到过度复杂的体系结构和对代理间同步的不切实际的假设的阻碍。在这项工作中,我们设计了一种简单而有效的协作方法,基于从每个代理商中交换输出,从而实现更好的带宽性能折衷,同时最大程度地减少了单车检测模型所需的更改。此外,我们放宽了现有的有关代理间同步的最新方法中使用的假设,仅需要在连接的代理之间进行常用时间参考,这可以在实践中使用GPS时间实现。该代码将在https://github.com/quan-dao/practical-collab-ception中发布。在V2X-SIM数据集中进行的实验表明,我们的协作方法达到76.72平均平均精度,这是早期协作方法的性能99%,同时消耗了与晚期协作一样多的带宽(平均为0.01 MB)。
简介:基于运动的脑机接口 (BCI) 利用执行或尝试运动期间产生的大脑活动来控制应用程序。通过依赖自然运动过程,这些 BCI 与其他 BCI 系统相比提供了更直观的控制。然而,利用脑电图 (EEG) 信号的非侵入式基于运动的 BCI 通常需要大量训练数据才能在检测运动意图方面达到适当的准确度。此外,运动障碍患者需要基于提示的范例来指示与运动相关的任务的开始。这样的范例往往会在试验之间引入较长的延迟,从而延长训练时间。为了解决这个问题,我们提出了一种新颖的实验范例,可以在 18 分钟内收集 300 次提示运动试验。
1背景和最新的5 1.1背景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.1.1当前电路状态。。。。。。。。。。。。。。。。。。。。。。。。7 1.1.2异步多锁系统。。。。。。。。。。。。。。。。8 1.1.3全球数字设计流。。。。。。。。。。。。。。。。。。。12 1.1.4全球数字验证流。。。。。。。。。。。。。。。。。15 1.2时钟域交叉(CDC)。。。。。。。。。。。。。。。。。。。。。。。19 1.2.1与CDC有关的问题。。。。。。。。。。。。。。。。。。。。。。20 1.2.2 CDC同步结构。。。。。。。。。。。。。。。。。。22 1.3 CDC验证。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 1.3.1 RTL上的CDC结构验证。。。。。。。。。。。。。。。。26 1.3.2基于CDC断言的验证。。。。。。。。。。。。。。。。。30 1.4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34
图 2:混合算法 [19](图 (a) 和 (b))和 ATiTA(P)(图 (c) 和 (d))的示意图。图 (a) 和 (c) 代表神经网络的观点,而 PU 的观点则显示在图 (b) 和 (d) 中。由于膜电位或强度的整合,所有地方的脉冲都用红色表示,突触传递事件用橙色表示,下一个脉冲的预测用绿色表示。对于 ATiTA(P),灰色也表示计算后丢弃的潜在脉冲。在 (a) 中,由于大小为 T com 的突触延迟,下一个大小为 T com 的容器中的神经元会接收脉冲,然后对其进行整合以计算膜电位。在 (b) 中,每个 PU 的计算都是按大小为 T com 的容器进行的,并且需要在每个 T com 进行同步。根据 PU 的数量,一些 PU 可能会等待其他 PU,而不会在每个线程上进行大量计算,因此它们的负载较低。在 (c) 中,对于 ATiTA(P),在网络级别使用离散事件方法:计算会跳转到下一个潜在尖峰。最小的尖峰被保留为实际的下一个尖峰。然后,仅对突触后神经元进行突触传递、相应强度的更新和下一个潜在尖峰的新计算。在 (d) 中,(c) 的不同操作按单个线程在单个 PU 上执行的连续操作的顺序排列,因此单个 PU 会随着时间的推移满负荷运行。请注意,两种算法(混合算法和 ATiTA(P))都具有时间精度,可以是经典的数值精度 10 15,从这个意义上讲,它们都计算连续时间。
有越来越多的研究项目,其目的是模拟大脑区域甚至完整的大脑,以更好地了解其工作方式。让我们引用:例如:欧洲的人类脑项目(1),通过疾病研究的综合神经技术(脑/思想)(7)或统一国家的大脑倡议(25)进行大脑映射。几种方法是可行的。有生化方法(34),它注定要像大脑一样复杂。已经研究了一种更具生物物理的方法,例如,请参见(14),其中皮质桶已成功地进行了相似,但仅限于约10个5个神经元。,人脑含有大约10个11个神经元,而像marmosets(7)这样的小猴子有6×10 8神经元(22)和一个较大的猴子,例如
我们引入了一个更有效的股份 - 股票,然后又有agre-agre-agre-eccast范式,用于构建ADKR,并保留自适应安全性。该方法替代了经典ADKG中昂贵的O(n)Asyn-Chronous-Chronous可验证秘密共享协议,其中O(n)便宜的公开共享成绩单的分布更便宜;在共识确认一组成品的分解后,它选择了一个小的κ-subset以进行验证,将总开销从O(n 3)降低至O(κn 2),其中κ是一个小的常数(通常约为30或更少)。为了进一步优化具体效率,我们提出了一种具有线性通信的交互式原始效率,以生成可公开可验证的秘密共享(PVSS)转录本,避免了计算上昂贵的非相互作用PVSS。此外,我们引入了分布式PVSS验证机制,最大程度地减少了不同各方的重复计算,并将主导的PVSS验证成本降低了约三分之一。
完全连接的神经网络,并转向卷积神经网络和变压器模型。尽管本课程的大部分将集中在监督学习上,但我们还将介绍自我监督的学习,对比学习,多模式学习以及对包括对抗性学习和扩散在内的生成模型的培训。