[1] D. Aoki,A。Huxley,E。Desolution,D。Braithwaite,J。Flouquet,J。P. Brison,Eve,C。Paulsen,Nature 2001,413。[2] F. S. Bergeret, A. F. Volcov, K. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B.模式。物理。2005,77。[3] A. I. Buzdin,修订版。模式。物理。2005,77。[4] M. Eschrig,T。Löfwander,Nat。物理。2008,4,138。 [5]圣约翰,L。Xie,J。J。Wang A. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。2008,4,138。[5]圣约翰,L。Xie,J。J。WangA. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。A. Bernevig,A。Yazdani,Science 2017,358。[6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。R. [7] R. Cai,Ye,P.LV,Y。公社。2021,12。
摘要 - 固有的薄层(或命中)模块的硅异质结通常在太阳能场中每年低于1%的降解,而在开路电压中显性降解,并且在串联电阻中有些降解。但是,详细的机制因模块而异。在这里,我们研究了在长期田间部署中发生的局部系列抗性的增加,这是由细胞区域指示的,在这些细胞区域中,光致发光强度不会降解,而是电致发光显着降解。为了直接测量局部串联电阻,我们已经凝固了局部电致发光降解区域,并使用扫描扩散抗性显微镜(SSRM)测量了4点探针和局部NM-尺度电阻的板电阻。通过4点探针的结果显示出散射的板电阻,例如,通过透明的导电氧化物层,A-SI:H Emitter或近结式C-SI反转层引起的不均匀电流路径。相比之下,SSRM结果表明在较小的纳米空间尺度上具有相对均匀且非降解的电阻率。SSRM是一种基于原子力显微镜的两末端电阻映射技术,可测量探针下方的NM-体积的局部电阻。在对照和降解样品上测得的一致电阻可以排除透明导电氧化物电阻的降解。
我们通过在100 mm ge晶片上减少压力化学蒸气沉积来生长紧张的GE/SIGE异质结构。将GE晶片用作外部延长的底物可以使高质量的GE富含SIGE应变 - 释放的缓冲液具有螺纹位错密度为ð66 6 61Þ10 5 cm 2,与SI Wafers上的控制应变缓冲区相比,几乎是一个数量级的改善。相关的短距离散射的减少可以极大地改善二维孔气体的疾病性能,该特性在几个GE/SIGE异质结构领域效应的晶体管中测量。We measure an average low percolation density of ð 1 : 22 6 0 : 03 Þ 10 10 cm 2 and an average maximum mobility of ð 3 : 4 6 0 : 1 Þ 10 6 cm 2 = Vs and quantum mobility of ð 8 : 4 6 0 : 5 Þ 10 4 cm 2 = Vs when the hole density in the quantum well is satu- rated to ð 1 : 65 6 0 : 02 Þ 10 11 cm 2 。我们预计,这些异质结构即时应用于下一代,高性能的GE旋转量,并将其集成到更大的量子处理器中。
摘要:为了实现高温下的量子反常霍尔效应(QAHE),采用磁邻近效应(MPE)的方法,破坏拓扑绝缘体(Bi0.3Sb0.7)2Te3(BST)基异质结构中的时间反演对称性,并与具有垂直磁各向异性的亚铁磁绝缘体铕铁石榴石(EuIG)形成异质结构。这里我们证明了大的异常霍尔电阻(R AHE),在 300 K 时超过 8 Ω(ρ AHE 为 3.2 μ Ω · cm),并在 35 个 BST/EuIG 样品中维持到 400 K,超过了 300 K 时 0.28 Ω(ρ AHE 为 0.14 μ Ω · cm)的过去记录。大的 R AHE 归因于 BST 和 EuIG 之间原子突变的富 Fe 界面。重要的是,AHE 环的栅极依赖性随着化学势的变化没有显示出符号变化。这一观察结果得到了我们通过在 BST 上施加梯度塞曼场和接触势进行的第一性原理计算的支持。我们的计算进一步表明,这种异质结构中的 AHE 归因于固有的贝里曲率。此外,对于 EuIG 上的栅极偏置 4 nm BST,在高达 15 K 的负顶栅电压下观察到与 AHE 共存的明显的拓扑霍尔效应(THE 类)特征。通过理论计算的界面调谐,在定制的磁性 TI 基异质结构中实现了拓扑不同的现象。关键词:拓扑绝缘体、磁性绝缘体、异常霍尔效应、磁邻近效应、第一性原理计算、贝里曲率
对于金属有机骨架 (MOF) 薄膜的光电应用,能够制造相对于基底表面法线高度取向的薄膜和异质结构非常重要。但是,如果没有足够详细的沉积薄膜结构表征,实现此目标的工艺优化将非常困难。结果表明,实验室系统的 2D 掠入射广角 X 射线散射 (GIWAXS) 数据对于提供此类表征大有帮助,并且可以 1) 比 1D 扫描更好地测试结构模型,2) 提供具有所需表面取向纹理(2D 粉末)的沉积薄膜部分的定量估计(可用于工艺优化),以及 3) 提供此类信息作为薄膜深度的函数(可用于异质结构表征)。本文在理解 MOF 薄膜的背景下介绍了 GIWAXS 数据收集和分析,然后展示了如何通过最小化溶液中的成核作用将通过蒸汽辅助转化制备的 UiO-66 的所需取向分数(2D 粉末分数)从 4% 提高到 95% 以上。最后,证明了一旦优化合成方案,就可以生长 UiO-66 和 UiO-67 的异质结构,其中两层都是高度有序的(UiO-66 83%,UiO-67 > 94%)。
p1.1 2d Andreas BeerUniversitätRegensburg接近性诱导的交换交互和动态电荷转移在Mose2/Crsbr van-der-waals异质结构带有正交旋转纹理
二维(2D)材料表现出许多显着的物理特性,包括2D超导性,磁性和依赖层的带隙。但是,单个2D材料很难满足复杂的实际要求。通过Verti Cally堆叠不同种类的2D材料获得的异质结构,由于其丰富的电子特征,吸引了研究人员的注意力。使用异质结构,可以克服晶格匹配的约束。同时,已经探索了针对电子和光电设备的高应用电位,包括隧道晶体管,柔性电子和光电视。具体来说,通过插入的基于石墨烯的范德华异质结构(VDWH)正在涌现,以实现各种基于功能异质结构的电子设备。外延石墨烯下的插入原子可以有效地从底物中解脱石墨烯,并有望实现石墨烯中丰富的新型电子性能。在这项研究中,我们系统地回顾了基于石墨烯的VDWH中单元素插入的进展,包括互嵌套机制,互化修饰的电子特性以及2D互化异质结构的实际应用。这项工作将激发2D材料科学前沿中的边缘切割想法。
单剂量的psilocybin是一种迷幻的,急性引起时空感知和自我溶解的扭曲,在人类临床试验中会产生快速而持久的治疗作用1-4。在动物模型中,psilocybin在皮质和海马5-8中诱导神经可塑性。尚不清楚人脑网络如何变化与迷幻药的主观和持久作用有关。在这里,我们通过纵向精确的功能映射跟踪了个体特异性的大脑变化(每个参与者大约有18个磁共振成像访问)。在高剂量psilocybin(25 mg)和哌醋甲酯(40 mg)之前,期间,期间和持续3周进行追踪健康成年人,并在6-12个月后带回额外的psilocybin剂量。psilocybin在皮质和亚皮层中大大中断的功能连通性(FC),急性导致比哌醋甲酯大三倍以上。这些FC的变化是由空间尺度(Areal,Global)之间的大脑对同步的驱动的,这些变化通过减少网络之间的相关性和反相关性来溶解网络区分。psilocybin驱动的FC变化在默认模式网络中最强,该模式网络连接到前海马,并被认为会产生我们的时空感,时间和自我感。FC变化中的个体差异与主观迷幻体验密切相关。执行感知任务减少了psilocybin驱动的FC变化。psilocybin导致前海马和默认模式网络之间FC持续下降,持续数周。持续减少海马默认模式网络连接性可能代表了迷幻药的预防和治疗效应的神经解剖学和机械相关性。
光电器件的发展需要在新材料体系和新器件机制上不断突破,需求从信号强度和响应度的检测转向对偏振态信息灵敏度的探索。二维材料是一个丰富的家族,具有多样化的物理和电子特性,可用于偏振器件,包括各向异性材料、谷电子材料和其他混合异质结构。在本文中,我们首先回顾了二维材料中偏振光相关的物理机制,然后详细描述了光学和光电特性,包括拉曼位移、光吸收和光发射以及功能光电器件。最后,对未来的发展和挑战进行了评论。大量的二维材料及其异质结构为偏振相关的科学发现和光电器件应用提供了希望。