冬季热电联产机组运行模式为“以热定电”,导致风电弃风[12]。为此,研究人员引入电热解耦装置来解决该问题。为实现热电联产机组热电解耦,在热电联产机组旁安装电储能装置和热储能装置。电力系统与供热系统协调运行,可以增加风电上网电量,是提高系统运行灵活性的有效途径[13-15]。通过引入电热转换装置,可以有效抑制可再生能源发电的波动,从而减少可再生能源弃风[16,17]。文献[18]提出了一种住宅小区局部尺度储热模型,研究了储热装置大小对持续供暖时间的影响。研究的设备包括电锅炉、储热装置、热泵等,随着设备投入的增加,设备供热能力的增量不再理想。
摘要 — 风能作为应对气候变化的一种手段,正迅速普及。然而,风力发电的多变性会破坏系统的可靠性并导致风力发电量减少,给风力发电商造成巨大的经济损失。作为现场备用电源的电池储能系统 (BESS) 是缓解风力发电量减少的解决方案之一。然而,BESS 的这种辅助作用可能会严重削弱其经济可行性。本文通过提出联合减少风力发电量和 BESS 能源套利来解决这个问题。我们将共置风力电池系统的市场参与分离,并为风电场和 BESS 开发联合竞价框架。由于能源价格和风力发电的随机性,优化联合竞价具有挑战性。因此,我们利用深度强化学习来最大化现货市场的总收入,同时释放 BESS 在同时减少风力发电量减少和进行能源套利方面的潜力。我们利用真实的风电场数据验证了所提出的策略,并证明我们的联合竞价策略对风电削减的响应更好,并且比基于优化的基准产生更高的收入。我们的模拟还表明,过去被削减的额外风力发电可以成为为 BESS 充电的有效电源,从而产生额外的财务回报。索引术语 — 深度强化学习、能源套利、现货市场、风电电池系统、风电削减。
高密度铅糊和用于深循环应用的专门糊状公式。高强度ABS或PP案例以及覆盖和阀门调节的结构。免费维护。高能力。环保,被归类为运输的“不可泄漏的电池”。高锡合金网格提供:较少的瓦斯,高腐蚀 - 耐腐蚀,低自排放,用于深循环应用的合金板材材料。在高温和低温环境下运作的特殊适应性。耐用的铜和不锈钢端子,用于高电导率。出色的循环寿命:80%DOD 800周期。独家电解质公式和分离器,用于保护电解质密度免受分层的影响。上级设计允许快速电荷接受和抵抗过度放电。
高密度铅糊和用于深循环应用的专门糊状公式。高强度ABS或PP案例以及覆盖和阀门调节的结构。免费维护。高能力。环保,被归类为运输的“不可泄漏的电池”。高锡合金网格提供:较少的瓦斯,高腐蚀 - 耐腐蚀,低自排放,用于深循环应用的合金板材材料。在高温和低温环境下运作的特殊适应性。耐用的铜和不锈钢端子,用于高电导率。出色的循环寿命:80%DOD 800周期。独家电解质公式和分离器,用于保护电解质密度免受分层的影响。上级设计允许快速电荷接受和抵抗过度放电。
本参考条款的目的(“ tor”)是建立清晰的期望和要求,以准备提交给基奇纳市的风能研究。遵守这些准则将有助于加快审查时间,并减轻对进一步修订和提交的需求。未能满足此Tor中规定的要求可能会导致申请被认为不完整。如果申请被认为不完整,它将退还给申请人,以满足必要的提交要求。定义:边界风隧道 - 一个可以模拟建筑和自然环境的风流特征的测试部分,并能够预测均值和阵风风速。计算流体动力学(CFD) - 使用计算机建模和模拟在数学上求解了定义域的风速和方向。配置 - 要评估的比例模型建筑物和结构的布局和设计。超级 - 超出(或超过)定义的阈值。定性研究 - 基于工程判断和对建筑物周围风流的知识的非数字桌面评估。这种知识和经验以及文献,可以对行人风条件进行可靠,一致,有效的估计,而无需进行定量研究。定量研究 - 基于CFD模拟和风能测量值的数值评估。这包括研究站点的计算机或物理模型,周围环境和地形(如果需要)。何时需要:然后将模拟的风流信息与当地风记录结合使用,以预测感兴趣区域的风速。
摘要:风光互补发电制氢是解决风电和太阳能发电随机性强、波动性大的重要手段。本文将永磁直驱风力发电机组、光伏发电单元、电池组、电解槽组装在交流母线内,建立了风光储氢耦合发电系统数学模型及PSCAD/EMTDC中的仿真模型,设计了能量协调控制策略。经过仿真,提出的控制策略能有效降低风电和太阳能发电的弃风率,平抑风电和太阳能发电的波动,验证了建立的模型的正确性和控制策略的有效性和可行性。
可再生能源的日益整合使得电网平衡变得具有挑战性,因为它们具有间歇性。可再生能源可能会被削减,尤其是在生产超过需求或电网内出现输电和/或配电网络拥塞时。但是,如果使用电池存储,削减就变得没有必要,前提是电池存储具有足够的可用存储容量,可以在发电过剩时存储能量,并在高峰时段需求高时将其释放到电网。因此,电池存储的能量可以抵消昂贵且对环境有害的峰值电厂(例如开放式/联合循环燃气轮机)的供应。我们以英国为例,研究了利用大容量电池存储取代开放式和联合循环燃气轮机发电厂,利用风能削减能源的技术经济前景。我们开发了一种用于确定和优化锂离子型电池的技术经济模型。优化旨在确定存储在何种成本和规模下可以商业上适用于电网级能源应用。结果表明,在风电日均弃风率为 15% 且电池成本为 200 英镑/千瓦时的基本假设下,优化后的 1.25 GWh 电池每年可满足 285 GWh 的峰值需求,其对应的净现值为 2240 万英镑,内部收益率为 1.7%,回收期为 14 年。但是,要实现 8% 的内部收益率(投资的最低门槛收益率),电池成本必须低于 150 英镑/千瓦时。对弃风、放电深度、电池效率以及电池成本和收入等参数的敏感性分析表明,本研究考虑的所有技术经济参数都对电池储能用于电网的商业可行性有重大影响。关键词:电池储能系统 (BESS)、弃风、技术经济优化、开式/联合循环燃气轮机、电网级储能
责任限制/免责声明 MATLAB ® 是 The MathWorks, Inc. 的商标,经许可使用。The MathWorks 不保证本书中文本或练习的准确性。本作品对 MATLAB ® 软件或相关产品的使用或讨论并不构成 The MathWorks 对特定教学方法或 MATLAB ® 软件特定用途的认可或赞助。虽然出版商和作者已尽最大努力编写本作品,但他们不对本作品内容的准确性或完整性作出任何陈述或保证,并特别声明放弃所有担保,包括但不限于对适销性或特定用途适用性的任何默示担保。销售代表、书面销售材料或本作品的促销声明不得创建或延长任何担保。本作品中引用某个组织、网站或产品作为引文和/或潜在进一步信息来源,并不意味着出版商和作者认可该组织、网站或产品可能提供的信息或服务或可能提出的建议。本作品的出售前提是出版商不提供专业服务。本文包含的建议和策略可能不适合您的情况。您应在适当的情况下咨询专家。此外,读者应注意,本作品中列出的网站可能在撰写本作品和阅读本作品之间发生变化或消失。出版商和作者均不对任何利润损失或任何其他商业损失负责,包括但不限于特殊、偶然、后果或其他损害。