摘要:微电网普遍存在可再生能源弃风率高、电网建设和运行成本高等问题。为提高微电网可再生能源利用率、提高电网运行的经济性与环境安全性,提出一种基于扩展ε-约束法的风光柴并网微电网系统混合储能容量优化方法。首先,将电池与季节性氢储能系统耦合,建立混合储能模型,避免传统微电网系统储能方式单一、容量较小的不足。其次,以规划期内电网综合成本与碳排放为目标函数,以可再生能源弃风率为评价指标,以电储能和季节性氢储能系统运行状况为主要约束,构建微电网容量配置模型。最后,采用扩展ε-约束法对上述模型进行优化,并采用熵-TOPSIS法进行配置方案优选。通过对比分析结果表明,优化方法可以有效提高当地风能和太阳辐射的吸收率,显著降低微电网的碳排放量。
3.0外展策略和实施活动遗产风的公共外展活动的主要目标包括公民参与该项目的开发,通过为公共投入/反馈和信息传播的沟通途径建立沟通途径;以及根据第10和94-C程序的清晰沟通利益相关者权利的沟通。遗产风项目的公共宣传工作于2016年提交了PIP。最初的外展工作始于确定利益相关者(请参阅PIP第3A节)。PIP中的初步利益相关者列表由90个实体组成,并随着时间的推移而发展,以包括通过公共宣传工作和反馈确定的利益相关者。该项目的第10条申请中包含的工作利益相关者列表包含500多个个人和实体,包括但不限于:联邦,州和地方机构,当选官员,社区组织,寄宿土地所有者,邻近的土地所有者以及涡轮机和该设施500英尺的2500英尺以内的居民和居民。自遗产于2021年1月13日过渡以来,该利益相关者列表已在整个94-C过程中进行了更新。Heritage Wind通过以下努力与这些确定的利益相关者互动:
开发大规模储能基础设施是利用太阳能和风能等间歇性可再生能源的最有效方法之一。尽管电网面临持续的需求,但由于天气条件的变化,可再生能源无法确保持续稳定的发电。由于太阳能和风能的负荷系数相对较低,分别为 10% 和 29.3% 1 ,要在不对能源安全构成重大风险的情况下增加可再生能源在能源结构中的份额极具挑战性。然而,这并不意味着可再生能源发电量不足。可再生能源发电量经常超过电路容量,迫使生产商关闭其设施,导致英国在 2021 年损失 2.3 TWh 和 5.07 亿英镑 2 。总削减成本包括向可再生能源生产商支付 1.41 亿英镑以关闭其发电厂,以及向替代工厂支付 4.29 亿英镑以补偿削减。为了说明削减的电量,2.3 TWh 足以满足曼彻斯特一年的家庭和非家庭用电量 *3 。随着英国政府到 2035 年将海上风电装机容量提高到 50 吉瓦,太阳能装机容量提高到 70 吉瓦,可再生能源弃风弃光的成本预计会增加 4 。国家电网的系统转型情景表明,到 2035 年,将有近 23% 的风电和太阳能发电量被弃用 5 。因此,扩大英国大规模和长时储能容量不仅可以在需求高涨时平衡能源生产,
摘要:为应对能源危机和环境污染,世界范围内可再生能源发电得到快速发展,目前利用最为广泛的是太阳能和风能,但也造成了严重的弃光弃风问题。氢能以其高效、清洁、可再生的特点成为电能储存的理想载体,以可再生能源为动力源的电解水制氢技术是最有前景的能源转换方式之一。本文简要分析了近年来我国可再生能源发电和消费的现状,阐述了碱性、质子交换膜和高温固体氧化物电解水制氢技术的特点、原理、发展现状及改进方法,并结合实例论证了其在可再生能源发电和储能领域的应用前景。
- 标准化或增强命名的一致性 - 该功能已被更强大的替代功能所取代。 - 该功能包含设计缺陷,通常是安全缺陷,因此应该避免,但现有代码依赖于它。 - 该功能被视为无关紧要,将来将被删除,以简化整个系统。 - 该软件的未来版本将进行重大的结构更改,从而不可能(或不切实际)支持旧功能。