摘要。我们提出了戴维斯(Davis),这是一个基于i fifusion的udiovi sual separa the the trapion框架,该框架通过生成学习解决了视听声音源分离任务。现有方法通常将声音隔离作为基于面具的回归问题,从而取得了重大进展。但是,他们在捕获高质量分离声音与各种表情所需的复杂数据分布时面临局限性。相比之下,戴维斯利用生成扩散模型和分离U-net直接从高斯噪声中综合了分离的声音,并在音频混合物和视觉信息上进行条件。具有其生成性目标,戴维斯更适合实现各种声音猫的高质量分离的目标。我们将戴维斯与AVE和音乐数据集上现有的最新歧视性音频分离方法进行了比较,结果表明,戴维斯在分离质量方面胜过其他方法,这证明了我们可以解决视听源分离任务的框架的优势。我们的项目页面可在此处提供:https://wikichao.github.io/data/projects/davis/。
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
虽然行为克隆最近已成为自主驾驶的非常成功的范式,但Humans很少学会通过单独的模仿或行为克隆来执行复杂的任务,例如驱动或行为。相比之下,人类的学习通常涉及在整个交互式学习过程中的其他详细指导,即通常通过语言的反馈提供详细的信息,以详细信息,以进行审判的哪一部分进行,不正确或次要地进行。以这种观察的启发,我们引入了一个有效的基于反馈的框架,用于改善基于行为克隆的传感驱动剂培训。我们的关键见解是利用大语模型(LLM)的重新进步,以提供有关驾驶预测失败背后的理由的纠正良好的反馈。更重要的是,我们引入的网络体系结构是有效的,是第一个基于LLM的驾驶模型的第一个感觉运动端到端培训和评估。最终的代理在Nuscenes上的开环评估中实现了最新的性能,在准确性和碰撞率上的表现优于先前的最新时间超过8.1%和57.1%。在卡拉(Carla)中,我们的基于相机的代理在以前的基于激光雷达的AP摄入率上提高了16.6%的驾驶得分。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
摘要。通过互补感应方式整合各种表示形式对于自主驾驶中的强大场景解释至关重要。近年来,融合视觉和范围数据的深度学习体系结构具有先进的2D和3D对象检测。但是,这些方式在不利的天气或照明条件下通常会降解,从而导致性能下降。虽然已经开发了域适应性甲基元素来弥合源域和目标域之间的缝隙,但由于源和目标域之间的固有差异,它们通常会缺乏。此差异可以在数据的不同分布和不同特征空间的不同分布中表现出来。本文介绍了一个全面的域自适应对象检测框架。通过深度转移学习开发,该框架旨在从标记的透明天气数据中稳健地概括到无标记的不良天气条件,从而增强了基于深度学习的对象检测模型的性能。创新的斑块熵融合模块(PEFM)是我们方法的核心,该方法动态整合了sens-sor数据,强调关键信息并最大程度地减少了背景干扰。这进一步补充了一种新型的加权决策模块(WDM),该模块(WDM)根据其在特定环境条件下的功效来调整不同传感器的贡献,从而优化了检测准确性。此外,我们在转移学习过程中集成了域对齐损失,以确保有效的域适应性通过将特征图差异定于清晰和不利天气数据集之间的差异。我们评估了不同数据集的模型,包括Exdark(单峰),CityScapes(单峰)和密集(Mul-timodal),在我们评估的时间点,它在所有数据集中排在所有数据集中。
2.16测试报告将显示检测到的外交类型或不确定的结果。当测试结果尚无定论时,该公司指出,应使用新的拭子和新的墨盒重复测试。结果局部存储在连接到设备的笔记本电脑上,可以作为PDF导出。公司指出,应要求,Genomadix Cube用户可以获得帮助,以配置Genomadix Cube CYP2C19测试,以自动将CYP2C19结果导出到其电子健康记录系统中。这包括创建一个加密文件,以将结果传输到医院数据系统中。公司指出,可选的外部控制墨盒可用于检查平台的适当性能。公司还指出,要求用户根据本地法规和认证要求运行外部控制。
摘要。现实世界图像超分辨率(RISR)旨在从退化的低分辨率(LR)输入中重新结构高分辨率(HR)图像,以应对诸如模糊,噪声和压缩工件之类的挑战。与传统的超分辨率(SR)不同,该方法通过合成的下采样来典型地生成LR图像,而RISR则是现实世界中降级的复杂性。为了有效地应对RISR的复杂挑战,我们适应了无分类器指导(CFG),这是一种最初用于多级图像生成的技术。我们提出的方法,真实的SRGD(带有无分类器引导扩散的现实世界图像超分辨率),将RISR挑战分解为三个不同的子任务:盲图恢复(BIR),常规SR和RISR本身。然后,我们训练针对这些子任务量身定制的类别条件SR扩散模型,并使用CFG来增强现实世界中的超分辨率效果。我们的经验结果表明,实际SRGD超过了定量指标和定性评估中的现有最新方法,如用户研究所证明的那样。此外,我们的方法在
2024 年 4 月由 FSMB 众议院通过 执行摘要 人工智能 (AI) 具有巨大潜力,可帮助医疗保健提供者进行诊断、治疗选择、临床记录和其他任务,以提高质量、可及性和效率。但是,如果没有适当的“护栏”和理解,这些技术就会带来风险,这可能会影响临床实践中的考虑因素以及州医疗委员会的监管流程。通过采取以道德原则为基础的主动和标准化治理方法,州医疗委员会可以促进各种形式的人工智能的安全有效整合,同时优先考虑患者的健康。本报告总结了专家意见和程序,以制定 FSMB 道德和专业委员会的指导方针,以帮助医生和州医疗委员会引导负责任和合乎道德的人工智能融入,重点是 (1) 教育、(2) 强调人类责任、(3) 确保知情同意和数据隐私、(4) 主动解决责任和义务问题、(5) 与专家合作以及 (6) 将人工智能治理锚定在道德原则上。必须持续监控和改进使用人工智能的临床系统和流程。这不应在真空中进行,而应成为医生、卫生系统、数据科学家和监管机构(包括州医疗委员会)之间协作的重点。通过深思熟虑地应对人工智能在医疗保健领域带来的机遇和挑战,州医疗委员会可以促进人工智能的安全、有效和合乎道德的使用,将其作为一种工具来增强(但通常不会取代)医疗实践中人类的判断力和责任感。在履行其使命以确保患者从人工智能的应用中受益而不是受到伤害的过程中,州医疗委员会必须避免过度监管和监管过度,避免试图监管不属于其职权范围的领域。通过集中精力关注持照人使用人工智能的现状和未来,州医疗委员会可以保持监管效率,实现跨辖区在临床实践中对人工智能监管的一致性,帮助确保人工智能的益处,并在维护专业标准的同时积极保护患者。
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
