扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
2024 年 4 月由 FSMB 众议院通过 执行摘要 人工智能 (AI) 具有巨大潜力,可帮助医疗保健提供者进行诊断、治疗选择、临床记录和其他任务,以提高质量、可及性和效率。但是,如果没有适当的“护栏”和理解,这些技术就会带来风险,这可能会影响临床实践中的考虑因素以及州医疗委员会的监管流程。通过采取以道德原则为基础的主动和标准化治理方法,州医疗委员会可以促进各种形式的人工智能的安全有效整合,同时优先考虑患者的健康。本报告总结了专家意见和程序,以制定 FSMB 道德和专业委员会的指导方针,以帮助医生和州医疗委员会引导负责任和合乎道德的人工智能融入,重点是 (1) 教育、(2) 强调人类责任、(3) 确保知情同意和数据隐私、(4) 主动解决责任和义务问题、(5) 与专家合作以及 (6) 将人工智能治理锚定在道德原则上。必须持续监控和改进使用人工智能的临床系统和流程。这不应在真空中进行,而应成为医生、卫生系统、数据科学家和监管机构(包括州医疗委员会)之间协作的重点。通过深思熟虑地应对人工智能在医疗保健领域带来的机遇和挑战,州医疗委员会可以促进人工智能的安全、有效和合乎道德的使用,将其作为一种工具来增强(但通常不会取代)医疗实践中人类的判断力和责任感。在履行其使命以确保患者从人工智能的应用中受益而不是受到伤害的过程中,州医疗委员会必须避免过度监管和监管过度,避免试图监管不属于其职权范围的领域。通过集中精力关注持照人使用人工智能的现状和未来,州医疗委员会可以保持监管效率,实现跨辖区在临床实践中对人工智能监管的一致性,帮助确保人工智能的益处,并在维护专业标准的同时积极保护患者。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要:粘弹性的护理止血复苏方法,例如Rotem或TEG,对于决定时间柔性的个性化凝结干预措施至关重要。国际输血指南强调患者的安全性增加和降低治疗成本。我们分析了护理提供者对Rotem的看法,以识别感知的优势和改进领域。我们进行了一项单中心,混合的定性 - 定量研究,包括访谈,然后进行在线调查。使用模板方法,我们在护理提供商对Rotem的响应中首先识别主题。后来,参与者根据在线问卷中的五点李克特量表上的六个陈述对六个陈述进行了评分。接受了七十七名参与者的采访,52名参与者完成了在线调查。通过分析用户感知,我们确定了十个主题。最常见的积极主题是“高准确性”。最常见的负面主题是“需要培训”。在在线调查中,有94%的参与者同意监控实时Rotem Temograms有助于更快地启动目标治疗,而81%的人同意重复的ROTEM培训将是有益的。麻醉护理提供者发现Rotem是准确且迅速可用于支持动态和复杂止血情况下的决策。但是,临床医生认为解释Rotem是一项复杂且认知要求的任务,需要明显的培训需求。
浆细胞起源于淋巴组织(免疫)组织,然后迁移到整个体内受保护的部位,在那里它们响应于感染相关的物质而产生大量抗体。长寿命的浆细胞(LLPC)对于防止再感染很重要,被认为是专门迁移到骨髓的。
摘要 - 用于空气质量的传感器的部署受到高成本的限制,导致网络覆盖不足和某些领域的数据缺陷。利用现有的观察结果,时空kriging是一种在特定时期估算未观察到位置空气质量的方法。具有增量训练策略的归纳时空kriging已证明了其使用虚拟节点模拟未观察到的节点的有效性。但是,虚拟节点和真实节点之间的差异仍然存在,这使从虚拟节点到实际未观察到的学习模式的应用变得复杂。To address these limitations, this paper presents a Physics- Guided Increment Training Strategy (PGITS).具体来说,我们设计了一个动态图生成模块,以将空气颗粒作为物理知识的对流和扩散过程纳入图形结构,并动态调整邻接矩阵以反映节点之间的物理相互作用。通过将物理原理用作虚拟节点和真实节点之间的桥梁,该策略可确保虚拟节点及其伪标签的特征更接近实际节点。Consequently, the learned patterns of virtual nodes can be applied to actual unobserved nodes for effective kriging.Index Terms —Air quality inference, sensors, inductive spatio- temporal kriging, physics principles, increment training strategy
本文概述了从头开始学习人工智能(AI)的详尽,逐步的方法。它首先阐明目标和范围,然后回顾基本的AI文献来建立基本的概念和框架。常规编程和AI之间的比较分析突出了指令,数据使用,适应性和决策的关键区别。接下来,本文综合了批判性术语,解释了诸如监督和无监督学习,深度学习和自然语言处理之类的方法如何适合更广泛的AI生态系统。认识到诸如数据安全,透明度和偏见之类的挑战,概述了专业技术(提高工程,及时调整,检索增强的生成以及对大型语言模型的微调),以帮助学生和实践者有效地解决复杂的任务。此外,本文还探讨了AI代理,利用自主权和学习能力来改变各个部门的客户服务和决策。实用的最佳实践和现实世界实例指导新移民,以制定有效的提示,管理计算资源以及将AI工具与组织目标保持一致。最终,读者通过考虑绩效需求,数据质量和道德约束来负责任地导航和实施AI。这种结构化的增量方法确保了理解AI不断发展的景观的坚实基础,从而将学习者定位为未来的进步。通过精心遵循这些步骤,学习者有信心构建AI解决方案
根据环境条件的不同,轻型软机器人可以表现出难以建模的各种运动模式。因此,优化其性能很复杂,尤其是在多个空气和流体动力学过程影响其运动时,以低雷诺数为特征的小型系统中。在这项工作中,我们通过将实验结果应用于两种进化算法中的适应性功能来研究水下游泳者的运动:粒子群优化和遗传算法。由于可以迅速制造具有不同特征(表型)的柔软,轻型机器人,因此它们为优化实验提供了一个很好的平台,使用实体机器人竞争,以提高连续一代的游泳速度。有趣的是,就像在自然进化中一样,意外的基因组合导致了令人惊讶的良好结果,包括速度增加了数百%或发现自我振荡的水下运动模式。
尽管在野外有大量未标记的图像,但在原始图像数据上进行了可扩展的视觉预训练仍然是一个挑战。像素重建之类的通用配方努力为有效捕获详细的语义而努力,而在增强图像视图之间保持一致性的方法优化依赖于未经保育数据(如Web Crawls或视频框架)中不存在的归纳偏见。我们如何从广泛的未标记的IMEAL数据集中更有效地学习?我们研究注释引导程序,这种方法学会了将图像关联到示意注释,并使用未标记的数据来引导模型的理解,通过对图像附近农作物的语义进行预测。关键的优势在于它具有规格(哪些语义概念很有趣?)从预测中(这些概念发生在自然图像数据中?)。我们表明,注释引导使我们能够通过策划的未标记数据集或弱监督的数据集指导预训练,同时通过自举损失从所有未经切割的图像数据中学习。我们的实验证明了对野外未标记图像的预先培训的改进,包括视频数据,例如epickitchens,Coco等场景数据以及CC12M(例如CC12M)。
摘要基于RNA的疗法在过去十年中迅速出现,提供了一种与常规药物有很大不同的新药物。可以对这些疗法进行编程以靶向或恢复有缺陷的基因,从而获得更多个性化的治疗方法并减少副作用。值得注意的是,RNA疗法在遗传肝病的治疗方面取得了重大进展,以小型干扰RNA治疗的遗传性透甲状腺蛋白淀粉样变性为例,这些淀粉样蛋白淀粉样蛋白使用肝脏靶向策略,例如Galnac共轭以提高疗效和安全性。基于RNA的基因编辑技术,例如基本编辑器和Prime Editor,定期散布了短暂的短篇小学重复系统,也表现出了希望最小化基因组重排和癌症风险的能力。虽然RNA疗法具有很高的精度,但仍在优化交付方法和确保长期安全性和功效方面仍然存在挑战。脂质纳米颗粒-MRNA疗法,尤其是在罕见疾病中蛋白质的替代品,已从临床前的成功中获得了支持。与病毒基因疗法相比,mRNA疗法具有更安全的特征,其基因组整合和致癌基因激活的风险降低。然而,临床试验,尤其是对于罕见疾病,面临限制,例如小样本量和短期观察期。进一步的临床前研究,包括非人类灵长类动物,对于精炼试验设计至关重要。尽管具有潜力,但RNA疗法的高成本构成了一个挑战,需要成本与私密模型来指导定价和可及性。在这里,我们讨论了基于RNA的疗法的基本方面,并展示了遗传肝脏代谢疾病中最相关的临床前和临床发展。
