视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要。我们提出了戴维斯(Davis),这是一个基于i fifusion的udiovi sual separa the the trapion框架,该框架通过生成学习解决了视听声音源分离任务。现有方法通常将声音隔离作为基于面具的回归问题,从而取得了重大进展。但是,他们在捕获高质量分离声音与各种表情所需的复杂数据分布时面临局限性。相比之下,戴维斯利用生成扩散模型和分离U-net直接从高斯噪声中综合了分离的声音,并在音频混合物和视觉信息上进行条件。具有其生成性目标,戴维斯更适合实现各种声音猫的高质量分离的目标。我们将戴维斯与AVE和音乐数据集上现有的最新歧视性音频分离方法进行了比较,结果表明,戴维斯在分离质量方面胜过其他方法,这证明了我们可以解决视听源分离任务的框架的优势。我们的项目页面可在此处提供:https://wikichao.github.io/data/projects/davis/。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
虽然行为克隆最近已成为自主驾驶的非常成功的范式,但Humans很少学会通过单独的模仿或行为克隆来执行复杂的任务,例如驱动或行为。相比之下,人类的学习通常涉及在整个交互式学习过程中的其他详细指导,即通常通过语言的反馈提供详细的信息,以详细信息,以进行审判的哪一部分进行,不正确或次要地进行。以这种观察的启发,我们引入了一个有效的基于反馈的框架,用于改善基于行为克隆的传感驱动剂培训。我们的关键见解是利用大语模型(LLM)的重新进步,以提供有关驾驶预测失败背后的理由的纠正良好的反馈。更重要的是,我们引入的网络体系结构是有效的,是第一个基于LLM的驾驶模型的第一个感觉运动端到端培训和评估。最终的代理在Nuscenes上的开环评估中实现了最新的性能,在准确性和碰撞率上的表现优于先前的最新时间超过8.1%和57.1%。在卡拉(Carla)中,我们的基于相机的代理在以前的基于激光雷达的AP摄入率上提高了16.6%的驾驶得分。
摘要 - 用于空气质量的传感器的部署受到高成本的限制,导致网络覆盖不足和某些领域的数据缺陷。利用现有的观察结果,时空kriging是一种在特定时期估算未观察到位置空气质量的方法。具有增量训练策略的归纳时空kriging已证明了其使用虚拟节点模拟未观察到的节点的有效性。但是,虚拟节点和真实节点之间的差异仍然存在,这使从虚拟节点到实际未观察到的学习模式的应用变得复杂。To address these limitations, this paper presents a Physics- Guided Increment Training Strategy (PGITS).具体来说,我们设计了一个动态图生成模块,以将空气颗粒作为物理知识的对流和扩散过程纳入图形结构,并动态调整邻接矩阵以反映节点之间的物理相互作用。通过将物理原理用作虚拟节点和真实节点之间的桥梁,该策略可确保虚拟节点及其伪标签的特征更接近实际节点。Consequently, the learned patterns of virtual nodes can be applied to actual unobserved nodes for effective kriging.Index Terms —Air quality inference, sensors, inductive spatio- temporal kriging, physics principles, increment training strategy
根据环境条件的不同,轻型软机器人可以表现出难以建模的各种运动模式。因此,优化其性能很复杂,尤其是在多个空气和流体动力学过程影响其运动时,以低雷诺数为特征的小型系统中。在这项工作中,我们通过将实验结果应用于两种进化算法中的适应性功能来研究水下游泳者的运动:粒子群优化和遗传算法。由于可以迅速制造具有不同特征(表型)的柔软,轻型机器人,因此它们为优化实验提供了一个很好的平台,使用实体机器人竞争,以提高连续一代的游泳速度。有趣的是,就像在自然进化中一样,意外的基因组合导致了令人惊讶的良好结果,包括速度增加了数百%或发现自我振荡的水下运动模式。
抑郁症是一种高度普遍且异质性的疾病,通常以对抗抑郁剂治疗的反应可变。最近的研究强调了肠道轴是精神病的关键调节剂,强调了微生物群对神经递质合成,免疫调节和全身炎症的影响。证据表明,肠道营养不良有助于治疗耐药性,而特定的细菌菌株(例如乳酸杆菌和双歧杆菌)会增强抗抑郁药疗效。相反,致病物种促进神经炎症,损害药物反应。微生物组引导的抗抑郁治疗的新兴概念为优化精神疗法提供了一种精确的医学方法。宏基因组学,代谢组学和人工智能的进步促进了个性化的治疗策略,Incorpo评级益生菌,益生元和粪便微生物群移植(FMT)作为常规药物治疗的辅助手段。研究表明,微生物组的调节可能会增强5-羟色胺的可用性,减少全身性炎症并改善抗抑郁剂预后,尤其是在耐治疗抑郁症中。尽管有很有希望的发现,但关于长期影响,最佳微生物干预措施和个性化治疗方案仍然存在几个差距。此外,年龄,性别,饮食和昼夜节律影响了微生物群的位置,需要进行量身定制的干预措施。
这项研究探讨了机器学习指导设计在优化纳米化剂中的重要潜力,重点是减少机械系统中的摩擦和磨损。利用神经网络和遗传算法,研究表明了高级计算技术如何准确预测和增强纳米求的摩擦学特性。研究结果表明,与传统的矿物基油基润滑剂相比,纳米化剂,尤其是含石墨烯和碳纳米管的纳米化剂,在降低摩擦系数和磨损速率方面表现出明显改善。此外,这些纳米求的增强的热稳定性和载荷能力有助于大量的能源节省和提高的操作效率。这项研究强调了采用纳米化剂的经济和环境益处,强调了它们改变润滑技术并支持可持续工业实践的潜力。
摘要最多 350 个字:(请输入)交互式推荐旨在适应和学习项目和用户之间的动态交互,以实现推荐系统的响应性和准确性。强化学习天生有利于应对动态/交互环境,因此在交互式推荐研究中引起了越来越多的关注。然而,大多数现有工作倾向于学习固定的用户兴趣,而忽略了它们本质上是动态的。论文首先介绍推荐系统及其应用。然后是详细的文献综述,涵盖三个主要相关领域:序列感知推荐、交互式推荐和知识感知推荐系统。论文还回顾了基于强化学习的推荐系统应用,并讨论了其优点和缺点。之后,本论文报告了关于交互式推荐系统的一般问题陈述和要解决的挑战,包括用户动态兴趣建模、强化学习优化的计算成本以及基于强化学习的推荐系统的性能下降。特别是,我们提出了一套通过强化学习改进交互式推荐的技术和模型。我们提出了一种学习分布式交互嵌入的新模型,该模型可以以紧凑而富有表现力的方式捕获用户的动态兴趣。受到图卷积网络和知识感知推荐的最新进展的启发,我们设计了一个知识引导的深度强化学习 (KGRL) 模型,以利用强化学习和知识图谱的优势进行交互式推荐。该模型在演员-评论家网络框架内实现。它维护一个本地知识网络来指导训练阶段的决策过程,并采用注意力机制来发现项目之间的长期语义。为了降低强化学习的计算成本,我们进一步设计了一种增强优化策略,缩小了更新步骤的空间并改变了奖励函数。我们在模拟在线环境中对提出的三种方法进行了全面的实验,结果表明,与文献中的基线和最先进方法相比,我们的模型的性能得到了持续的改进。最后,本论文讨论了交互式推荐系统的未来工作和潜在的进一步改进。
量子材料提供了一个充满活力的操场,以挑战我们对复杂的新兴现象的理解,也是颠覆性下一代技术的重要基础。可以将理性材料设计,合成方法,超快光学控制以及实验和理论表征工具的持续进展部署在连续的动态反馈回路中,以探测复杂物质的基本性质并实现对其功能特性的可调控制。该研究主题展示了量子材料设计和控制中的最新工作,包括新的观察,预测和方法,使我们目前对其新兴特性的理解进一步了解。特别是,我们的研究主题包括有关从预测到综合到了解新材料的各种研究主题的四篇文章。Abarca Morales引入了一个框架,旨在分析和预测材料的结构和对称性,尤其是它们在应变下的演变方式。通过关注四个相互联系的八面体的相互作用和布置(许多量子材料中的常见基序),该模型提供了对特定材料功能的出现的见解,并促进了具有所需特征的化合物的合理设计。专注于材料特性,Han等。回顾了Spintronic应用中ABO 3过渡金属氧化物(TMO)的潜力。重点放在其独特的电子结构和量子状态上,讨论了强旋轨耦合和电子相关性之间的相互作用如何导致有效的电荷 - 自旋相互转换。Nixon等。Nixon等。它突出了通过外延应变和异质结构工程来调整这些特性的策略。提出了一项有关锶超导汞的新研究,为汞丰富化合物中的超导性提供了宝贵的见解,并应对合成这些材料的挑战