摘要:运动想象 (MI) 是一种无需实际使用肌肉即可想象运动任务执行的技术。当用于由脑电图 (EEG) 传感器支持的脑机接口 (BCI) 时,它可以用作人机交互的成功方法。本文使用 EEG MI 数据集评估了六种不同分类器的性能,即线性判别分析 (LDA)、支持向量机 (SVM)、随机森林 (RF) 和来自卷积神经网络 (CNN) 系列的三种分类器。该研究调查了这些分类器在静态视觉提示、动态视觉引导以及动态视觉和振动触觉 (体感) 引导的组合指导下对 MI 的有效性。还研究了数据预处理过程中滤波通带的影响。结果表明,在检测不同方向的 MI 时,基于 ResNet 的 CNN 在振动触觉和视觉引导数据上的表现都明显优于竞争分类器。事实证明,使用低频信号特征对数据进行预处理是实现更高分类准确度的更好解决方案。研究还表明,振动触觉引导对分类准确度有显著影响,而相关改进对于结构更简单的分类器尤其明显。这些发现对于基于 EEG 的 BCI 的开发具有重要意义,因为它们提供了有关不同分类器在不同使用环境中的适用性的宝贵见解。
1 1化学与系统生物学系,斯坦福大学,斯坦福大学,加利福尼亚州94305 2 2 2 2瑞典索尔纳学院,瑞典6遗传学系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305 7欧洲同步辐射设施,法国格勒诺布尔,法国8号电气工程系,ESAT/PSI,KU LEUVEN,LEUVEN,BILGIUM 9 MITHER IMAGING RESIGION CENTRAL,UZ LEUVIUM,BELGIUM 10 MATICIT IMATIC CENTRAL,BELGIUM NUUN GENIC,HUMUN GUINIC,HUMUN GUINEC,比利时11英国剑桥大学生物化学系12 Applied肿瘤基因组学计划,赫尔辛基大学,赫尔辛基,芬兰,1化学与系统生物学系,斯坦福大学,斯坦福大学,加利福尼亚州94305 2 2 2 2瑞典索尔纳学院,瑞典6遗传学系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305 7欧洲同步辐射设施,法国格勒诺布尔,法国8号电气工程系,ESAT/PSI,KU LEUVEN,LEUVEN,BILGIUM 9 MITHER IMAGING RESIGION CENTRAL,UZ LEUVIUM,BELGIUM 10 MATICIT IMATIC CENTRAL,BELGIUM NUUN GENIC,HUMUN GUINIC,HUMUN GUINEC,比利时11英国剑桥大学生物化学系12 Applied肿瘤基因组学计划,赫尔辛基大学,赫尔辛基,芬兰,
*相应的作者; Zr:zoran.rankovic@stjude.org,vs:vladimir.savic@pharmacy.bg.ac.rs。§授予该工作作者的贡献:MK,综合,数据收集和分析,手稿写作和修订。am,合成,研究设计和协调,数据收集和分析,手稿写作和修订。GT,合成,数据分析,手稿修订,FK,数据收集和分析。tr,结构生物学,手稿写作和修订。HC,提供的试剂。,数据收集和分析。yl,数据收集和分析。XF,数据收集和分析。sc,数据收集和分析。bj,数据收集。RH,数据收集。LP,数据收集和分析。VM,数据收集和分析。WCKP,提供的试剂。MFR,监督,髓母细胞瘤细胞系数据生成和分析,手稿写作和修订。JMK,监督,所有单元线数据生成和分析,手稿编写和修订。MF,监督,数据分析,结构生物学,手稿写作和修订。zr,构思了研究,监督,数据分析,手稿写作和修订。vs,监督,数据分析,手稿写作和修订
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2023年3月21日发布。 https://doi.org/10.1101/2023.03.18.533263 doi:Biorxiv Preprint
2. Ikemura N、Taminishi S、Inaba T、Arimori T、Motooka D、Katoh K、Kirita Y、Higuchi Y、Li S、Suzuki T、Itoh Y、Ozaki Y、
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
黑人患者经皮冠状动脉干预(PCI)后的绩效比白人患者更糟糕。抗血小板处方中的不平等可能会导致这种健康差异。我们比较了CYP2C19基因分型后种族的P2Y 12抑制剂处方,以指导PCI后选择抗血小板治疗。包括在PCI后进行临床CYP2C19基因分型的九个部位的患者。推荐用于CYP2C19无功能等位基因载体的替代疗法(例如Prasugrel或Ticagrelor),其中氯吡格雷的效果较差。主要结果是基于基因型的P2Y 12抑制剂(氯吡格雷与替代疗法)的选择。,有2448例(73%)为白色,而659(20%)为黑色。黑色患者的黑色患者的缺乏等位基因(34.3%对29.7%,p = 0.024)。PCI后出院时,处方了44.2%的黑色和44.0%的白色无功能等位基因载体。在12个月内进行最后一次随访时,在数字上的黑色(51.8%)比白色(56.7%)的无功能等位基因载体开了替代疗法(p = 0.190)。然而,考虑到与P2Y 12抑制剂选择相关的其他因素(优势比0.79,95%置信区间0.58-1.08),差异并不显着。黑人(14.3%)和白色(16.7%)没有无功能等位基因的患者(p = 0.232)之间的替代疗法使用没有差异。在PCI后接受CYP2C19测试的实际患者中,黑人和白人患者之间的P2Y 12抑制剂处方率没有差异。我们的数据表明在接受CYP2C19测试的患者中,基因型引导的抗血小板处方中没有种族差异。
使用免疫检查点抑制剂 (ICI) 的免疫疗法是肿瘤学发展的一项突破,已应用于多种实体瘤。然而,与传统的癌症治疗方法不同,免疫检查点抑制剂 (ICI) 通过引起炎症来引发间接细胞毒性,在某些情况下会导致病变增大。因此,建议不要立即宣布疾病进展 (PD),而是根据实体瘤免疫相关疗效评价标准 (ir-RECIST) 在 4 - 8 周后的随访放射学评估中确认。鉴于临床医生难以立即区分假进展和真正的疾病进展,我们需要新的工具来协助这一领域。放射组学是一种创新的数据分析技术,它通过从图像中高通量提取定量特征来量化肿瘤特征,可以从早期成像中检测出更多信息。本综述将总结放射组学在免疫治疗方面的最新进展。值得注意的是,我们将讨论应用放射组学区分假性进展和 PD 的潜力,以避免在确认期病情恶化。我们还回顾了放射组学在超进展、免疫相关生物标志物、疗效和免疫相关不良事件 (irAE) 中的应用。我们发现放射组学在精准癌症免疫治疗中已显示出良好的效果,并且可以通过非侵入性方式进行早期检测。
摘要 志贺氏菌是一种革兰氏阴性细菌,可侵入人体肠道上皮。由此引起的感染志贺氏菌病是最致命的细菌性腹泻病。有关决定志贺氏菌病理生理的基因(包括染色体和毒力质粒)的大部分信息都是通过经典反向遗传学获得的。然而,流行的诱变技术的技术限制使得单次反应中只能产生少量突变体,从而阻碍了大规模的志贺氏菌靶向诱变和随后的表型评估。我们采用了一种 CRISPR-Cas 依赖性方法,其中切口酶 Cas9 和胞苷脱氨酶融合在单向导 RNA(sgRNA)的引导下引入靶向 C ! T 转换,导致内部终止密码子和翻译过早终止。在使用 mCherry 荧光报告基因的原理验证实验中,我们能够在大肠杆菌和志贺氏菌中生成功能丧失突变体,效率高达 100%。使用改进的波动分析,我们确定在优化条件下,由 Cas9 脱氨酶融合引入的非靶向突变的频率与自发突变在同一范围内,这使我们的方法成为细菌诱变的安全选择。此外,我们对该方法进行了编程,以突变已充分表征的染色体和质粒携带的志贺氏菌基因,并发现突变体的表型与已报道的基因缺失突变体的表型相似,在表型水平上没有明显的极性效应。该方法可用于 96 孔板格式,以提高通量并在几天内生成一系列靶向功能丧失突变体。