使用下面的引物模板(表 1),片段 2 可以通过 PCR 扩增(图 4A)。我们建议使用 gRNA NIA TLS1/2 作为 PCR 模板。“NNNNNNNNNNNNNNNNNNNN”(表 1)代表应由 gRNA 靶序列替换的核苷酸。用于创建 NIA1 靶向片段 2 的引物列于下方作为示例(表 1)——这些引物用于创建 gRNA NIA TLS1/2。引物还在片段末端添加了 BsaI 切割位点(图 4A),这些位点与 gRNA 片段 1 TLS1/2 中的双 BsaI 位点兼容。
植物病毒对全球农业构成了重大威胁,并需要有效的工具才能及时检测。我们提出了AutoPvprimer,这是一种创新的管道,该管道整合人工智能(AI)和机器学习以加速植物病毒引物的发展。管道使用Biopython从NCBI数据库自动检索不同的基因组序列,以增加后续引物设计的鲁棒性。design_-primers_with_tuning模块使用随机森林分类器,可优化参数并为不同的实验条件提供灵活性。质量控制措施,包括评估Poly-X含量和熔化温度,提高了引物的可靠性。AUTOPVPRIMER独有的是Visualize_primer_dimer模块,它支持引物二聚体的可视化评估,这是其他工具中缺少的功能。引物特异性通过引物爆炸验证,这有助于管道的整体效率。AutoPvprimer已成功地应用于番茄镶嵌病毒,证明其适应性和效率。模块化设计允许用户自定义,并将适用性扩展到不同的植物病毒和实验场景。管道代表了引物设计的重大进展,并为研究人员提供了加速分子生物学实验的有效工具。未来的发展旨在扩展兼容性并纳入用户反馈,以巩固AutoPvprimer,作为对生物信息学工具箱的创新贡献,也是提高植物病毒学研究的有希望的资源。
使用 Prime Script 逆转录酶(Takara,日本)进行逆转录反应。使用 FastStart Essential DNA Probes Master(瑞士罗氏公司)和 QuantStudio 3 实时 PCR 系统(赛默飞世尔科技)进行定量 PCR(qPCR)。将每个基因的 mRNA 表达水平标准化为 Actb mRNA 的值。TaqMan 引物对和探针的序列描述如下:Actb:5'-FAMCCTGGCCTCACTGTCCACCTTCCA-TAMRA-3'(探针),5'- CCTGAGCGCAAGTACTCTGTGT-3'(正向引物),5'-CTGCTTGCTGATCCACATCTG-3'(反向引物); P2ry12:5'-/56-FAM/CCATGGATG/ZEN/TGCCTGGTGTCAACA/3IABkFQ/-3'(探针),5'- CCAGTCTGCAAGTTCCACTAAC-3'(正向引物),5'-GAGAAGGTGGTATTGGCTGAG-3'(反向引物);Igf1:5'-/56-FAM/TCCGGAAGC/ZEN/AACACTCACATCCACAA/3IABkFQ/-3'(探针),5'-
少于 20 个核苷酸,应使用与下引物 T 相等的退火温度。也可以使用温度梯度来优化每个引物对的退火温度。对于两步循环,梯度
核糖核苷酸的生物起源前合成可能伴随着非规范核苷酸的合成,包括 TNA 的苏核苷酸构件。在这里,我们研究了活化苏核苷酸参与非酶模板指导聚合的能力。我们发现,与核糖核苷酸相比,多个连续苏核苷酸单体的引物延伸非常不利。动力学、核磁共振和晶体学研究表明,这部分是由于引物延伸过程中咪唑桥接 TNA 二核苷酸中间体的形成速度较慢,部分是由于攻击 RNA 引物 3'-羟基与进入的苏核苷酸中间体的磷酸盐之间的距离较大。在存在活化下游 RNA 寡核苷酸的情况下,即使是单个活化苏核苷酸,添加到引物中的速度也比活化核糖核苷酸慢 10 倍。相反,RNA 引物末端或 RNA 模板中单个活化的苏核苷酸仅导致引物延伸率略有下降,这与晶体结构所揭示的微小和局部结构扭曲相一致。我们的结果与异质原始寡核苷酸通过复制循环产生越来越同质的 RNA 链的模型相一致。
通常通过 PCR 对淋巴肿瘤中的微小残留病 (MRD) 进行灵敏的定量分析,使用免疫球蛋白或 T 细胞受体基因重排作为靶标,并使用患者或等位基因特异性寡核苷酸 (ASO) 作为引物。自 30 年前首次描述以来,ASO-qPCR 得到了广泛的应用,尤其是在欧洲,欧洲MRD 联盟成员发表的论文提供了有关该方法执行的指南和通用反向引物的推荐序列 [1-3]。如果候选患者特异性正向引物可以将 MRD 定量到 10 −4 的水平,则可以使用它,该引物的序列是患者独有的并且是特定于患者的。一些引物可以定量到 10 −4 以下,但有些会失败 [4]。失败有时可能是由于假阳性,但原因通常不清楚。 HAT-PCR(高 A/T PCR 或高退火温度 PCR)是 qPCR 的一种最新改进,其涉及引物设计和扩增条件的改进,以提高特异性并降低 MRD 检测中假阳性结果的频率 [5]。当检测 20 μg DNA 时,它的检测限为 10 −65 。在开发 HAT-PCR 之后,研究了根据欧洲 MRD 指南使用患者特异性正向引物和推荐的反向 J 引物进行的传统 qPCR 的灵敏度。单个引物对通常可以检测到低至 10 −4 的 MRD 水平,但经常无法检测到更低的水平。PCR 可以潜在地将单个靶标扩增到检测点 [6],但靶标的扩增有时会被与基因组 DNA 同时纯化的外在物质或另一种内在扩增反应所抑制。引物二聚体扩增引起的抑制很常见,人们已对 PCR 进行了多项技术改进以尽量减少这种抑制 [ 7 , 8 ]。其他脱靶 DNA 序列的扩增反应也已被观察到 [ 9 ],但此类反应的特征不甚了解,其重要性尚不清楚。传统 qPCR 无法将 MRD 定量低于 10 −4,这被证明是由于引物与基因组 DNA 相互作用造成的。除了有报道称碎片化的基因组 DNA [ 10 ] 可能会抑制 PCR 外,基因组 DNA 在 PCR 中的作用并未引起人们的兴趣。但是,我们认为分析这种现象很重要,原因有二。首先,了解和预防它可以提高 MRD 定量的灵敏度。其次,其他 PCR 检测需要在存在基因组 DNA 的情况下灵敏地检测靶标,因此可能容易受到抑制。因此,分析抑制及其预防机制可能与许多 PCR 检测的设计相关。
†索引引物板(QUDI-96AA,QUDI-96BA,QUDI-96CA,QUDI-96DA QUDI-96EA,QUDI-96FA,QUDI-96FA,QUDI-96GA,QUDI-96HA);每个板包含96对样品指数引物加上通用引物,每个板均与一对UDI样品指数相对应。每个索引都是一次使用。
我们使用 All-in-one Cas9 构建体编辑了 HEK293 细胞中的 DNA (胞嘧啶-5-)-甲基转移酶 3 beta (DNMT3B) 基因,从编辑后的细胞中分离基因组 DNA,然后使用标准 (黄色曲线) 和 snapback 引物 (红色曲线,图 2A) 进行 CRISPY 测定以量化编辑成功率。我们还对从未编辑的细胞中分离的 DNA 进行了 CRISPY 测定,同样使用标准 (黄色曲线) 和 Snapback 引物 (红色曲线,图 2B)。正如预期的那样,标准引物在编辑和未编辑的 DNA 中均提供了强大的扩增,然而 snapback 引物仅在从编辑细胞中分离的 DNA 中提供了明显的扩增。标准和 snapback 引物之间的 ΔCt 可直接测量编辑成功率,而熔解曲线形状之间的差异表明编辑的 DNA 中存在缺失 (图 2C,方框区域)。
作者格式,未经同行评审的文档发布于2023年3月31日。doi:https://doi.org/10.3897/arphapreprints.e104185
虽然已经揭示了SARS-COV-2的整个基因组序列,但还证明SARS-COV-2的基因组与SARS-COV和MERS-COV的基因组具有分别为80%和50%的基因组。鉴于SARS-COV-2感染和死亡率数据,COVID-19的诊断和治疗在世界各地突出。 由于生物技术科学家已经开发了许多RT-PCR套件。 但是,病毒是快速突变的生物,为了提高准确性,长期可行性并避免RT-PCR分析的关闭目标结果,病毒基因组的区域,具有低突变率的病毒基因组和针对这些区域的引物的设计非常重要。 在此范围内,我们提出了一种新型算法,该算法可用于查找SARS-COV-2的低突变率区域和根据这项研究中算法的发现设计的引物。鉴于SARS-COV-2感染和死亡率数据,COVID-19的诊断和治疗在世界各地突出。由于生物技术科学家已经开发了许多RT-PCR套件。但是,病毒是快速突变的生物,为了提高准确性,长期可行性并避免RT-PCR分析的关闭目标结果,病毒基因组的区域,具有低突变率的病毒基因组和针对这些区域的引物的设计非常重要。在此范围内,我们提出了一种新型算法,该算法可用于查找SARS-COV-2的低突变率区域和根据这项研究中算法的发现设计的引物。