背景:基因组步行为与生活有关的科学相关地区做出了贡献。在此,我们详细介绍了一种新的基因组步行方法,被提名为任意后缀序列特异性引物PCR(ASP-PCR)。目标:本研究旨在构建一种有效的基于PCR的基因组步行方法。材料和方法:此方法的关键是在初级ASP-PCR中使用混合引物(HP)。该HP是通过将任意序列与最序列特异性引物的后缀构成的。初级ASP-PCR中的松弛周期有助于HP向基因组进行部分退火,从而产生许多单链DNA。在下一个严格的周期中,目标单链被指数放大,因为它也具有与HP的序列特异性部分互补的位点;由于缺乏这样的网站,因此无法进一步处理非目标。嵌套的二级/第三级ASP-PCR进一步选择性地富集了目标DNA。结果:通过获得与Oryza sativa hygromycin基因相邻的未知DNA和Brevis Brevis CD0817 L-谷氨酸脱羧酶基因相邻的未知DNA,可以证实ASP-PCR的实用性。结果表明,每个次级或第三级ASP-PCR表现出1 - 2个透明靶标扩增子,大小为1.5至3.5 kb,背景较弱。结论:ASP-PCR是一个有前途的基因组步行计划,可能在与生命有关的科学相关领域中有潜在的使用。
ScienCell 绝对大鼠线粒体 DNA 拷贝数定量 qPCR 检测试剂盒 (ARMQ) 旨在直接比较样本的平均 mtDNA 拷贝数。大鼠 mtDNA 引物组可识别并扩增大鼠 mtDNA 上最保守的区域之一,并且不会扩增核基因组 DNA 上的任何脱靶序列。单拷贝参考 (SCR) 引物组可识别并扩增大鼠 17 号染色体上 100 bp 长的区域,并作为数据标准化的参考。已知 mtDNA 拷贝数的参考基因组 DNA 样本可作为计算目标样本 mtDNA 拷贝数的参考。精心设计的引物确保:(i) 高效,实现可靠的定量;(ii) 无非特异性扩增。每个引物组都已通过 qPCR 验证,包括熔解曲线分析和凝胶电泳,以确保扩增特异性,并通过模板连续稀释来验证扩增效率。 2X GoldNStart TaqGreen qPCR Master Mix(目录号:MB6018a-1)是一种基于 SYBR ® Green 染料的 qPCR Master Mix,具有“热启动”特性。它在单个试管中包含 SYBR ® Green、dNTP、Taq DNA 聚合酶和惰性金色上样指示剂。通过 ScienCell 独特的化学修饰 Taq DNA 聚合酶实现的“热启动”特性可最大程度地抑制引物二聚体的形成。先进的缓冲液配方具有出色的特异性和效率,线性动态范围宽。惰性金色上样指示剂可更好地可视化和跟踪 qPCR 板或试管中的样品上样情况。
ScienCell 绝对大鼠线粒体 DNA 拷贝数定量 qPCR 检测试剂盒 (ARMQ) 旨在直接比较样本的平均 mtDNA 拷贝数。大鼠 mtDNA 引物组可识别并扩增大鼠 mtDNA 上最保守的区域之一,并且不会扩增核基因组 DNA 上的任何脱靶序列。单拷贝参考 (SCR) 引物组可识别并扩增大鼠 17 号染色体上 100 bp 长的区域,并作为数据标准化的参考。已知 mtDNA 拷贝数的参考基因组 DNA 样本可作为计算目标样本 mtDNA 拷贝数的参考。精心设计的引物确保:(i) 高效,实现可靠的定量;(ii) 无非特异性扩增。每个引物组都已通过 qPCR 验证,包括熔解曲线分析和凝胶电泳,以确保扩增特异性,并通过模板连续稀释来验证扩增效率。 2X GoldNStart TaqGreen qPCR Master Mix(目录号:MB6018a-1)是一种基于 SYBR ® Green 染料的 qPCR Master Mix,具有“热启动”特性。它在单个试管中包含 SYBR ® Green、dNTP、Taq DNA 聚合酶和惰性金色上样指示剂。通过 ScienCell 独特的化学修饰 Taq DNA 聚合酶实现的“热启动”特性可最大程度地抑制引物二聚体的形成。先进的缓冲液配方具有出色的特异性和效率,线性动态范围宽。惰性金色上样指示剂可更好地可视化和跟踪 qPCR 板或试管中的样品上样情况。
图 1 超声逆向 PCR (SIP) 的可视化表示。图中使用的缩写包括 KoRV — 考拉逆转录病毒、LTR — 长末端重复、pol — 聚合酶基因。 (a) 整合到考拉基因组 DNA 中的 KoRV 原病毒以典型的 LTR 区域 (绿色框) 和逆转录病毒基因 (蓝色框) 两侧的形式显示。注意:为简单起见,仅以图表形式表示 pol 基因 (红色框) 的大致位置。 (b) 使用超声处理将考拉基因组 DNA 碎裂成平均长度为 2-7 kb 的片段。然后对碎裂的 DNA 进行平端修复和磷酸化 (未显示)。 (c) 随后将样品分成两部分:非适配器组 (c1) 和适配器组 (c2)。非接头组在环化之前未进行任何修改,而接头组在 DNA 分子的两端连接有相同的接头序列(黄色框),用于辅助解释环化和扩增后的倒置扩增子序列。(d)接头组和非接头组均环化,从而产生环状 DNA 模板。(e)环状 DNA 模板用两组针对 KoRV 的 pol 和 LTR 区域的引物进行扩增。没有这些引物结合位点的环状模板不会扩增。(f)扩增和测序产物被倒置,引物结合位点位于扩增子的侧翼。产生了两种主要类型的 PCR 产物:(i)由 LTR 引物扩增的 PCR 产物和(ii)由 pol 引物扩增的 PCR 产物
abiopuretm基因组DNA方案用于从细菌生长中提取DNA。使用定量荧光计设备测量DNA样品的浓度(20 ng/μl)。宏company提供了冻干状态的引物:S。sanguis-f 5`-ggatagtggctcagggcagccagccagt t-3`,S。sanguis-r 5`-gaacagttgctgctgcttgcttgcttgtgtgtc- 3`为获得储备溶液,通过将冻干的引物分散在300μL无核酸酶的水中,可以实现100 pmol/µl的浓度。通过将10μl的储备底漆与90μl无核酸酶的水混合,制备了浓度为10 pmol/μl的溶液。按照制造商的说明,通过将10μL的主混合与1μl的前向引物,奖励底漆,6μl无核酸酶的无核酸酶水和2μL样品DNA混合,从而产生20μL的最终溶液。
5.1。反应缓冲液5x B7反应缓冲液包含:15 mM MGCL 2,5 mm DNTPS,增强剂和稳定器。我们不建议添加进一步的单独的PCR增强剂(例外请参见5.3)或MGCL 2。5.2。引物引物应使用默认引物3设置(https://bioinfo.ut.ee/primer3/)具有预测的熔点约为60°C。反应中的最终引物浓度应在0.2μm和0.6μm之间。5.3。10倍增强子长模板,富含GC的模板或具有复杂二级结构的模板:如果没有或弱扩增的添加10x B7增强子可以提高产量。5.4。退火使用的退火温度等于下TM引物的TM。如果存在非特异性产品,则以2°C的增量增加。或者使用温度梯度在实验中找到最佳的退火温度。5.5。扩展E Xtension应在72°C下进行。最佳延长时间取决于模板的扩增子长度和复杂性。我们建议大多数模板的延长时间为30秒(KB)。在2步协议的情况下,68至75°C可以用作结合退火/延长温度。5.6。多路复用PCR首次执行多重PCR时,建议在计算出的退火温度周围运行温度梯度。在随后的实验中应使用代表最佳特异性的退火温度。不应使用快速循环条件。最初建议使用最长片段的延长时间。
Sanger 测序或链终止或双脱氧方法基于 DNA 聚合酶的两个特性:聚合酶合成单链 DNA 模板的精确正确的互补拷贝,并且它们可以使用 2',3'- 双脱氧核苷酸三磷酸 (ddNTP) 作为底物。双脱氧核苷酸的 3' 端缺少羟基并且只有氢,因此一旦该核苷酸在生长点被掺入链中,链的延长就会停止在 ddNTP 处并且不再充当链延长的底物。在实践中,使用 DNA 聚合酶 I 的 Klenow 片段,因为它不具有 5'- 3' 外切酶活性,这是完整酶的特性。所有 DNA 合成都需要引物,因此化学合成的寡核苷酸被用作引物,该引物退火到靠近需要测序的序列的位置。 (克列诺片段是大肠杆菌的DNA聚合酶I被蛋白酶枯草杆菌蛋白酶酶切时产生的一个大的蛋白质片段,它保留了5'→3'聚合酶活性和3'→5'外切酶活性,用于去除预编码核苷酸并进行校对,但失去了5'→3'外切酶活性,即引物去除活性)。
† 对于在六个标准 QIAcuity 通道(绿色、黄色、橙色、红色、深红色和远红色)中检测单个目标的多重反应,建议最终测定浓度为 0.8 µM 正向引物、0.8 µM 反向引物和 0.4 µM 探针。使用长斯托克斯位移染料时,需要不同的测定浓度。有关更多详细信息,请参阅 QIAcuity 高多重探针 PCR 试剂盒手册。
发现来自硅交叉反应性分析中的16种微生物与SARS-COV-2引物/探针集中的一种引物或探针之一具有≥80%的同源性(请参阅表6)。进行了一项微生物干扰研究,以进一步评估这些生物的潜在干扰。为了评估微生物干扰,通过在3倍LOD处脱离SARS-COV-2并在巢基矩阵中的阴性拭子中高浓度的微生物进行一式三份样品。一个没有微生物的样品进行了测试,以作为参考。结果表明,在呼吸标本中通常发现的高浓度的微生物,并且与SARS-COV-2引物或探针具有≥80%同源性或探针同源时不会干扰低浓度时SARS-COV-2的检测。