5 Invivosciences,Inc。,美国威斯康星州麦迪逊,对应作者:tetsuro@invivosciences.com,farid.alisafaei@njit.edu摘要。心肌细胞不断经历调节其收缩行为并有助于整体心脏功能的机械刺激。尽管机械转导的重要性在心脏生理学中,但心肌细胞整合外部机械提示的机制,例如拉伸和环境僵硬,仍然知之甚少。在这项研究中,我们提出了一个合并的理论和实验框架,以研究应变诱导的细胞骨架僵硬如何调节心肌细胞的收缩性和力产生。我们的研究阐明了调节组织中机械张力心肌细胞经验的经验(无论是通过调节环境僵硬,外部拉伸还是心脏成纤维细胞激活)可以有效地调节其收缩力,并通过细胞骨架菌株僵硬在这种机械转移反应中起着核心作用。
的目的:评估具有发育障碍高风险的婴儿肌肉张力障碍的患病率和发育,以及它们与脑瘫(CP)和囊性脑室周围白细胞乳突(CPVL)的关联。方法:39名婴儿肌肉张力的纵向探索CP高风险(Learn2Move 0 E 2项目)主要是由于大脑的早期病变。通过TOUWEN婴儿神经系统检查,在0到21个月之间评估了4次校正年龄(CA)的4次。在21个月大约确定CP的诊断。新生儿神经图像。使用广义线性混合效应模型计算出发育轨迹。结果:婴儿在93%(172/185)的三个或四个身体部位中表现出非典型的肌肉张力。最普遍的肌肉张力模式是颈部和树干的肌张力低下,四肢高血压(28%)。从7个月开始,手臂的高血压与CP有关。婴儿期的不对称臂张与单侧CP有关。在18 E 21个月的Ca踝关节高血压与CP相关时21个月;婴儿期的腿部高血压与CP无关。腿部高血压与CPVL有关,无论年龄如何。解释:由于大脑的早期病变而引起的高风险婴儿通常会出现肌肉张力障碍。在这些婴儿中,手臂的高通道和不对称的肌肉张力与21个月的CP诊断相关的7个月。腿的高血压不是。©2022作者。0/)。由Elsevier Ltd代表欧洲儿科神经病学会出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4。
表面张力效应已知在亚毫米尺度上是主导的。在这种情况下,文献已广泛描述了基本的物理(例如,表面张力,润湿,表面质地和涂层)和毛细管力在多种应用中被利用(例如,封装,自我拾取,自我调整,毛细管密封和毛细管轴承)。由于可以使用几种刺激来控制液体弯月扫描,因此这些力主要用于开放环的微型机器人(即没有实时反馈)。然而,至少有两个不确定性的主要来源阻碍了这些力在开放循环中正常工作:接触角性疾病引起的可变性(润湿和不明式的差异)和液体所涉及量的可变性。要拒绝这些干扰,需要将成功的传感器集成和相关的高级控制方案嵌入到毛细管微生物微生物系统中。本文从三种不同的角度分析了该领域的研究贡献:表面张力效应的刺激作用(光,B场等。),范围(致动,采摘,密封等。)以及感应和控制方案。技术复杂的开发与优雅,直接的工程解决方案共处。表面张力的生物学方面不包括在本综述中。
thiruvalla。摘要宫颈肌张力障碍是一种神经系统疾病,其特征是颈部肌肉收缩,头颈部异常和颈部姿势。本病例报告描述了一名63岁的帕金森氏症和早期痴呆症的男性,他在开始使用胆碱酯酶抑制剂Donepezil后患有严重的宫颈肌张力障碍,用于处理认知障碍。患者抱怨坐着困难,轻度刚性和前颈部屈曲。中断多奈替齐尔导致了显着改善;随后用三核苷酸治疗是有效的。此病例强调了监测胆碱酯酶抑制剂罕见但严重副作用的重要性,并强调需要进一步研究其机制和危险因素。关键字:多佩兹尔,宫颈肌张力障碍,帕金森氏症,三乙烯烯基。引言痉挛性核桃是宫颈肌张力障碍的另一种术语,是一种严重的神经系统疾病,其特征是零星,难以忍受的颈部肌肉痉挛。这种医疗状况可能会导致严重的宫颈疼痛和不适,并长时间重复的头部扭曲或倾斜[3]。它可能会对日常功能和生活质量产生负面影响[1]。确定个体可能更容易出现诸如宫颈肌张力障碍的运动障碍时,当它们的胆碱能系统受到诸如Donepezil之类的药物调节时[4]。Donepezil通常用于治疗阿尔茨海默氏病和帕克森诺式抗抑郁症。在神经系统疾病中,在全球范围内报告了所有ADR中有20%,其中vigiaCcess数据库中仅报告了48例肌张力障碍病例。多奈哌齐诱导的宫颈肌张力障碍可能是由于胆碱能过度活动而引起的,这破坏了神经递质之间的平衡,尤其是在基底神经节中,导致异常的肌肉收缩。
摘要:微环境力学在损伤后的形态发生和免疫反应中起着至关重要的作用,但由于脊髓损伤 (SCI) 中脆弱的机械强度和氧化性生理环境阻碍了对微环境力学的探索。在这里,我们设计了具有与神经组织匹配的机械性能的对映体肽自组装水凝胶,以通过立体构象识别和随之而来的蛋白质亲和力差异持续操纵细胞膜张力和机械转导。D-对映体水凝胶诱导的细胞内张力松弛激活星形胶质细胞中的神经发生和 ECM 重塑,抑制促炎并促进小胶质细胞中的促再生,这显著促进了大鼠严重 SCI 模型中的神经保护和功能恢复。与非神经细胞相反,细胞内张力松弛诱导的形态发生可能是神经特性,因为下游的机械信号是由由此产生的神经源性形态变化激活的。总体而言,诱导细胞内张力松弛是促进神经再生的潜在有效策略。
巨噬细胞已知会吞噬小膜片段,或trogocyocytose,靶细胞和病原体,而不是完全吞噬它们。然而,什么是什么原因导致巨噬细胞选择trogocyocyposis v and吞噬吞噬作用。在这里,我们报告靶细胞的皮质张力是巨噬细胞trogo细细胞增多症的关键调节剂。在低张力下,巨噬细胞优先将trogocyocytos抗体的细胞进行,而在高张力下它们倾向于吞噬吞噬作用。使用模型囊泡,我们证明,当膜张力增加时,巨噬细胞将迅速从trogococyocyposis转变为吞噬作用。僵硬的靶细胞皮质也使巨噬细胞偏向于吞噬它们,这种趋势可以通过增加抗体表面密度来抵消,并在trogocytosis的机械模型中捕获。这项工作表明,靶细胞而不是巨噬细胞决定吞噬作用与trogococyocyposisos,并且巨噬细胞不需要明显的分子途径来进行trogococytosis。
中风是由脑血管病变引起的急性局灶性局灶性神经功能障碍,成为全球死亡的第一个原因,也是幸存者残疾的第三个原因,运动和认知改变,例如半倍,痉挛,痉挛,肌肉无力和损失平衡。 div>基于虚拟现实的主动游戏已被用作前庭疾病,平衡和中风的改变。 div>Xbox 360/kinect是一种使用相机来启用游戏体验而无需物理控制器的设备,可以通过视觉刺激诱导认知决策。 div>这篇综述的目的是分析Xbox/Kinect对幸存的中风患者的平衡,运动功能,功能状态和肌肉张力的康复的影响。 div>本综述遵循Prism指南的方法论过程。 div>从PubMed Scientific数据库,Scopus,Pedro中选择10项研究。 div>四项研究的主要结果接近了列出的三个变量。 div>但是,在大多数研究中,Xbox/Kinect干预对运动功能的影响随后是平衡。 div>总之,Xbox/Kinect是一种互补的创新方法,不能取代其他物理治疗方式,可以提高患者对治疗的依从性,从而通过重复性活动来优化神经可塑性。 div>关键字:老年人,中风,锻炼视频游戏,虚拟现实,捕获运动。 div>
在这项工作中,应用了作者先前开发的模型,该模型允许预测无定形和半犯罪聚合物的张力的松弛,其中包括温度和变形的互连。变形 - 通过在三个温度下的无定形聚合物中的非线性张力弛豫测试研究了变形诱导的变化。该模型对材料的不同初始状态敏感,这是由于分子取度的变化以及不同的老化水平以及张力的实验数据提供了放松模块的实验数据,可为聚(甲基甲基丙烯酸甲酯) - PMMA -PMMA - 放松时间的宽度,与所使用的三个变形的激活能量相关,与3%和5%相关的激活能量相关。根据文献中的值,0,以及长时间的弛豫模块和∞的水平。关键字:PMMA,poli(甲基丙烯酸甲酯),粘弹性,张力放松。
表面张力是材料的重要嗜热特性。它在激光材料加工过程中有助于许多效果,例如激光束悬挂期间的润湿,在深度穿透焊接过程中激光束焊接过程中的Marangoni流动或蒸气毛细管稳定性。由于这些过程需要高温,因此在金属熔化温度以上的温度下也知道材料特性。尽管理论模型可以预测依赖温度的表面张力效应的几个方面,但预测可能显示出高的不确定性。因此,通常使用理论或实验数据中的近似值或线性外推来估计表面张力[1]。缺乏表面张力数据的主要原因是与暴露于高温的测量设备有关的困难。温度测量和表面张力测量方法对于液体金属来说都是挑战性的。