氧饱和度(SPO 2)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70–100%无运动成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2%运动成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3%低灌注成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2%脉搏率(PR)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2%脉搏率(PR)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25–240 bpm无运动成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 BPM运动成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.5 bpm低灌注成人/儿科/婴儿。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 BPM呼吸率(RRP)。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 运动成人 /儿科(> 2岁)后4-70 rpm。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 3 rpm和rms, div>3 BPM呼吸率(RRP)。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>运动成人 /儿科(> 2岁)后4-70 rpm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 rpm和rms, div>
摘要:这项研究介绍了使用糖尿病监测的光学方法的基于物联网的非侵入性血糖仪的开发。糖尿病需要尽快识别,并密切监测其发育。控制这种疾病的措施之一是使用糖素对血糖水平进行每日监测。市场上的葡萄仪是侵入性的,需要血液采样或传感器植入。要获取血液样本,有必要用针刺指尖获得血液样本。此过程不舒服,并且反复穿刺会增加传染病传播的风险。或者,本文提出了一种使用光学技术的非侵入性方法。原型设备主要由NIR LED(940nm)组成,该nir用作通过手指传递的光发射器,并反射为光电探测器(BPW34),该发射器(BPW34)充当光接收器。使用Arduino Cloud用于监视目的,该原型与IoT平台集成在一起。下一步涉及校准模型的开发。招募了十个健康的人参加由国家肾脏基金会Batu Pahat进行的葡萄糖读数测量。从该实验中成功获得了校准模型(𝑦=82.19𝑥+ 12.91)。开发的设备的准确性在93.2%至96.9%之间,发现错误百分比小于7%。总而言之,成功开发了一种无痛的非侵入性根源近红外LED和光电二极管。为了将来开发,可以使用更长的光发射器(例如1500 nm)来提高系统的准确性。关键字:糖尿病,糖仪,近红外(NIR),物联网(IoT),非侵入性
中风是由脑血管病变引起的急性局灶性局灶性神经功能障碍,成为全球死亡的第一个原因,也是幸存者残疾的第三个原因,运动和认知改变,例如半倍,痉挛,痉挛,肌肉无力和损失平衡。 div>基于虚拟现实的主动游戏已被用作前庭疾病,平衡和中风的改变。 div>Xbox 360/kinect是一种使用相机来启用游戏体验而无需物理控制器的设备,可以通过视觉刺激诱导认知决策。 div>这篇综述的目的是分析Xbox/Kinect对幸存的中风患者的平衡,运动功能,功能状态和肌肉张力的康复的影响。 div>本综述遵循Prism指南的方法论过程。 div>从PubMed Scientific数据库,Scopus,Pedro中选择10项研究。 div>四项研究的主要结果接近了列出的三个变量。 div>但是,在大多数研究中,Xbox/Kinect干预对运动功能的影响随后是平衡。 div>总之,Xbox/Kinect是一种互补的创新方法,不能取代其他物理治疗方式,可以提高患者对治疗的依从性,从而通过重复性活动来优化神经可塑性。 div>关键字:老年人,中风,锻炼视频游戏,虚拟现实,捕获运动。 div>
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月28日发布。 https://doi.org/10.1101/2024.08.28.606682 doi:biorxiv preprint
摘要肌张力障碍是一种复杂的疾病,孤立或与其他神经系统症状结合进行了多种表现。近年来,随着肉毒杆菌毒素和深脑刺激的出现,其治疗方法得到了显着改善,尽管需要进行其他研究以进一步完善这些干预措施。药物在DOPA响应性肌张力障碍的形式中至关重要,但在其他形式的肌张力障碍也可能是有益的。已经研究了许多不同的康复范例,其益处可变。对非侵入性刺激作为一种潜在治疗的兴趣越来越大,但迄今为止显示的长期益处有限,需要进行其他研究。本文回顾了这些类别中每个类别的治疗的现有证据。迄今为止,有许多对可用治疗的反应不完整的例子,并且需要改进的疗法。
免疫介导的肌张力障碍是由骨髓中周围产生的抗体引起的,该抗体穿过血脑屏障,或者可能是由固定的抗体合成的抗体引起的。抗体靶向神经元的不同成分,包括核内,细胞质成分或突触受体。在临床上,它们可以通过急性发作,缺乏家族病史和对免疫疗法的显着反应来与遗传性肌张力障碍区分开[3]。通常,免疫介导的肌张力障碍倾向于作为肌张力障碍症组合,但是当肌张力障碍是表现特征或形成现象学的主要部分时,现有文献就参与模式而言稀缺。在本文中,我们回顾了不同自身免疫性疾病中肌张力障碍的模式,并在患有可疑自身免疫性疾病的患者的唯一或主导性呈现特征时表现出临床方法。
稿件收到日期:2024 年 2 月 21 日;修订日期:2024 年 3 月 21 日;接受日期:2024 年 3 月 23 日。出版日期:2024 年 4 月 1 日;当前版本日期:2024 年 5 月 13 日。这项工作得到了美国国家航空航天局 (NASA) 浮游生物、气溶胶、云、海洋生态系统 (PACE) 项目的支持。(通讯作者:Gerhard Meister。)Gerhard Meister、Joseph J. Knuble、Robert H. Estep Jr.、David Kubalak 和 P. Jeremy Werdell 均就职于 NASA,戈达德太空飞行中心,美国马里兰州格林贝尔特 20771(电子邮件:gerhard.meister@nasa.gov;joseph.j.knuble@ nasa.gov;robert.h.estep@nasa.gov;david.kubalak@nasa.gov;jeremy。werdell@nasa.gov)。Ulrik Gliese 就职于 KBR,美国马里兰州富尔顿 20759(电子邮件:ulrik.b.gliese@nasa.gov)。Robert Bousquet 就职于 Genesis Engineering Solutions Inc.,地址:美国马里兰州兰汉姆 20706(电子邮件:robert.r.bousquet@nasa.gov)。Leland H. Chemerys、Samuel Kitchen-McKinley 和 Jeffrey W. McIntire 就职于 Science Systems and Applications Inc.,地址:美国马里兰州兰汉姆 20706(电子邮件:leland.h.chemerys@nasa.gov;samuel.kitchen@ssaihq.com;jeffrey.mcintire@ssaihq.com)。Hyeungu Choi 就职于 Global Science & Technology Inc.,地址:美国马里兰州格林贝尔特 20707(电子邮件:HChoi@gst.com)。Robert E. Eplee、Shihyan Lee 和 Frederick S. Patt 就职于 Science Applications International Corporation,地址:美国弗吉尼亚州雷斯顿 20190(电子邮件:robert.e.eplee@nasa.gov;shihyan.lee@nasa.gov;frederick.s.patt@nasa.gov)。Eric T. Gorman 就职于 Northrop Grumman,地址:美国马里兰州巴尔的摩 21240(电子邮件:eric.gorman@quantumspace.us)。Charles McClain 已退休,曾就职于 NASA,地址:美国马里兰州格林贝尔特 20771,戈达德太空飞行中心。他现在就职于美国马里兰州塞弗纳帕克 21146(电子邮件:chuckmcclain@verizon.net)。Zakk Rhodes 就职于美国 UT 84341 空间动力学实验室(电子邮件:zakk.rhodes@nasa.gov)。数字对象标识符 10.1109/TGRS.2024.3383812
(1) 该项目被日本科学技术振兴机构选为促进创新中心建设的项目,该项目为期五年(从 2015 年 6 月 1 日到 2020 年 3 月 31 日)。本文讨论的研究是基于该项目的合作成果。 (2) 当两种或两种以上气体的混合物通过专门的流路(由缠绕在卷轴上的空心管组成,称为柱)时,混合物的各种成分会随着时间自然分离。气相色谱仪是一种利用这种时间分离现象来识别和测量气体混合物成分浓度的分析仪器。传统的气相色谱仪是大型仪器,通常安装在桌面上;虽然已经开发了便携式版本,但它们的灵敏度和精度通常不如大型仪器。
维持不同类型光学模式的磁性纳米结构已用于磁力测定法和无标签的超敏感折射率探测,其中主要挑战是实现紧凑型设备,这些设备能够将这项技术从研究实验室从研究实验室转移到智能行业。这种观点讨论了在实现包含新架构和材料的创新传感器时的最新和新兴趋势,这些传感器利用了使用外部施加的磁场来主动操纵其光学特性的独特能力。除了在所谓的磁质体中使用良好的传播和局部等离子场外,我们还确定了全型平台的新潜力,用于感知要克服金属成分固有的损失。在描述最近的进步时,重点放在了几种可行的工业应用上,试图使我们对这个有前途的研究领域的未来构成融合光学,磁性和纳米技术的未来。
基于高功率和短脉冲激光器的几项未来实验涉及高能光子的产生,从而将新的重点放在了高能伽马极光法的挑战性主题上。在不久的将来,罗马尼亚的Eli-NP [1]设施将在两个10 PW激光束的帮助下,对高达〜10 23 W/cm 2的强度状态进行独特的研究。尽管低于Schwinger限制(〜10 29 W/cm 2)[2],这种强度制度为理论上预期的QED现象的实验研究开辟了道路,例如辐射反应和辅助成对的产生,在高强度激光脉冲和高能量电子之间的碰撞中(通过Laser Encelons之间的碰撞)(通过Laser Eccelfield aCcelfield aCceleratife)(创建)。在这些实验中,较高的兴趣是在接近GEV或GEV量表下对产生光子的极化和能量的测量。