药物发现和开发过程漫长而昂贵,平均每种药物花费超过 10 亿美元,耗时 10 至 15 年。为了减少整个过程中的高损耗,近十年来,人们对将机器学习方法应用于药物发现和开发的各个阶段的兴趣日益浓厚,尤其是在最早的阶段——识别可用药的疾病基因。在本文中,我们开发了一种新的张量分解模型来预测治疗疾病的潜在药物靶标(基因或蛋白质)。我们使用从 Open Targets 和 PharmaProjects 数据库中提取的数据,创建了一个三维数据张量,包含 1,048 个基因靶标、860 种疾病和 230,011 个证据属性以及将它们联系起来的临床结果。我们利用从面向药物发现的知识图谱中学习到的基因靶标表示丰富了数据,并应用我们提出的方法来预测未知基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并对几种常用的机器学习分类器以及贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,结合知识图谱嵌入可显著提高预测准确性,并且训练张量分解和密集神经网络的效果优于所有其他基线。总之,我们的框架结合了两种积极研究的机器学习方法来识别疾病目标,即张量分解和知识图谱表示学习,这可能是进一步探索数据驱动药物发现的有希望的途径。
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
摘要。本文提出了一种新的贝叶斯回归实现,该回归具有标量协变量的多维数组(张量)响应。最近,各个学科中出现了复杂的数据集,迫切需要设计具有张量值响应的回归模型。本文考虑了一种这样的应用,即在存在张量值大脑图像和标量预测因子的情况下,在 fMRI 实验中检测神经元激活。此应用的总体目标是识别由外部刺激激活的大脑空间区域(体素)。在此类应用和相关应用中,我们建议将所有细胞(或大脑激活研究中的体素)的响应一起回归为标量预测因子的张量响应,以考虑张量响应中固有的结构信息。为了估计具有适当细胞特定收缩的模型参数,我们提出了一种新的张量结构化回归系数多向断棍收缩先验分布,从而能够识别与预测因子相关的细胞。本文的主要创新之处在于,当细胞数量增长速度快于样本大小时,对张量响应回归中提出的收缩先验的收缩特性进行了理论研究。具体而言,在温和的假设下,张量回归系数的估计值在 L2 意义上逐渐集中在真实稀疏张量周围。各种模拟研究和脑激活数据分析从经验上验证了所提出的模型在细胞级参数估计和推断方面的良好性能。
从更基本的量子引力理论中产生局部有效理论,该理论似乎具有更少的自由度,这是理论物理学的一个主要难题。解决该问题的最新方法是考虑与这些理论相关的希尔伯特空间映射的一般特征。在这项工作中,我们从这种非等距映射构建了近似局部可观测量或重叠量子比特。我们表明,有效理论中的局部过程可以用具有更少自由度的量子系统来欺骗,与实际局部性的偏差可以识别为量子引力的特征。举一个具体的例子,我们构建了两个德西特时空的张量网络模型,展示了指数扩展和局部物理如何在崩溃之前被欺骗很长一段时间。我们的结果强调了重叠量子比特、希尔伯特空间维度验证、黑洞中的自由度计数、全息术和量子引力中的近似局部性之间的联系。
以前的研究人员已努力将A与BN区分开。荟萃分析仅在AN中强调了特定的认知观点障碍,而在BN中未观察到(7)。此外,正如神经心理学任务研究所暗示的那样,发现患者在食品情绪关系中表现出缺陷的粮食情感关系中的缺陷和食物情绪关系中的扰动(8)。另一项研究表明,患者倾向于将情绪抑制作为适应不良的情绪调节策略,与BN不同(9)。对AN和BN的神经影像学研究揭示了与两种疾病的特定特征有关的一些差异。例如,在一项静息状态功能连通性研究中,在背侧前扣带回皮层和脾后皮质之间显示出更强的连通性,而具有BN的妇女在背侧扣带回皮质和内侧轨道偏侧甲状腺皮质(10)之间表现出增加的同时活性(10)。
随着量子硬件的快速发展,量子电路的高效模拟已变得不可或缺。主要的模拟方法基于状态向量和张量网络。随着目前量子器件中量子比特和量子门的数量不断增加,传统的基于状态向量的量子电路模拟方法由于希尔伯特空间的庞大和广泛的纠缠而显得力不从心。因此,野蛮的张量网络模拟算法成为此类场景下的唯一可行解决方案。张量网络模拟算法面临的两个主要挑战是最优收缩路径寻找和在现代计算设备上的高效执行,而后者决定了实际的效率。在本研究中,我们研究了此类张量网络模拟在现代 GPU 上的优化,并从计算效率和准确性两个方面提出了通用的优化策略。首先,我们提出将关键的爱因斯坦求和运算转化为 GEMM 运算,利用张量网络模拟的具体特性来放大 GPU 的效率。其次,通过分析量子电路的数据特性,我们采用扩展精度保证模拟结果的准确性,并采用混合精度充分发挥GPU的潜力,使模拟速度更快、精度更高。数值实验表明,在Sycamore的18周期情况下,我们的方法可以将随机量子电路样本的验证时间缩短3.96倍,在一台A100上持续性能超过21 TFLOPS。该方法可以轻松扩展到20周期的情况,保持相同的性能,与最先进的基于CPU的结果相比加速12.5倍,与文献中报道的最先进的基于GPU的结果相比加速4.48-6.78倍。此外,本文提出的策略对
摘要。深脑刺激(DBS)是一种用于治疗运动障碍的既定疗法,并且显示出有望治疗多种其他神经系统疾病的结果。,对DBS的作用机理或刺激造成的脑组织的体积知之甚少。我们开发了使用解剖学和扩散张量MRI(DTI)数据来预测DBS激活的组织(VTA)的方法。我们将成像数据与大脑的详细有限元模型共同注册,并刺激电极以解剖和电气准确地预测刺激的扩散。模型的一个关键组成部分是DTI张量字段,用于表示三维各向异性和不均匀的组织电导率。使用该系统,我们能够融合结构和功能信息,以研究用于治疗帕金森氏病(PD)的丘脑下核的相关临床概率:DB。我们的结果表明,与同质性的各向同性组织体积相比,在我们的模型中包含张量范围会导致VTA的大小和形状的显着差异。这些差异的宏观与刺激电压成正比。我们的模型预测是通过比较预测的活化的扩散与观察到的PD患者眼动神经刺激的影响的传播来验证的。反过来,脑的3D组织电性能在调节DBS产生的神经激活的扩散中起着重要作用。
多模态学习研究的核心在于有效利用多模态之间的融合表示。然而,现有的双向跨模态单向注意力只能利用从一个源到一个目标模态的模态间相互作用。在模态数量有限且交互方向固定的情况下,这确实无法释放多模态融合的全部表达能力。在本文中,提出了多路多模态变换器(MMT),通过单个块而不是多个堆叠的跨模态块同时探索每个模态的多路多模态互相关。MMT 的核心思想是多路多模态注意力,其中利用多种模态来计算多路注意张量。这自然有利于我们开发全面的多对多多模态交互路径。具体而言,多路张量由多个相互连接的模态感知核心张量组成,这些核心张量由模态内交互组成。此外,张量收缩操作用于研究不同核心张量之间的模态间依赖关系。本质上,我们基于张量的多路结构允许将 MMT 轻松扩展到与任意数量的模态相关的情况。以 MMT 为基础,进一步建立分层网络,以递归方式将低级多路多模态交互传输到高级交互。实验表明,MMT 可以实现最先进或相当的性能。
C 第六章附录 217 C.1 (伪)完美张量和绝对最大纠缠态 . 217 C.2 (伪)完美张量和量子纠错码 . . . . . 218 C.3 Qudit 稳定器代码和状态 . . . . . . . . . . . . . . . . . 221 C.3.1 广义泡利群 . . . . . . . . . . . . . . . . 221 C.3.2 Qudit 稳定器代码 . . . . . . . . . . . . . . . . 221 C.4 稳定器(伪)完美张量 . ...