组织者 2024 年 Sammaniversary 研讨会,庆祝 Saman Amarasinghe 60 岁生日。在麻省理工学院举办。 2024 年稀疏研讨会(原 CTSTA) 汇集稀疏张量代数、图算法和关系代数编程系统领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2023 年稀疏张量代数编译器技术研讨会 汇集稀疏张量代数编译和计算领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2019 年稀疏张量代数编译器技术特邀研讨会 邀请来自 11 所大学、6 家公司和 3 个国家实验室的稀疏张量代数编译和计算领域的顶尖研究人员。 2012–2013 年 MIT 编程语言场外务虚会 七位 CSAIL 教授及其研究小组参加。围绕许多简短的演讲重新组织了节目,主持了小组讨论,邀请了外部演讲者,并发表了开幕词。
为什么研究这个模块?本课程是一年级课程Mate40001的延续,旨在为学生在数学方面和计算与材料科学和工程最相关的方面的坚定基础,尤其是随后的研究中所需的主题。在该模块结束时,学生将能够: - 雇用矢量计算来解决MSE中的问题。- 将傅立叶系列和傅立叶变换相关联,并应用于衍射和由部分微分方程描述的系统。- 在与弹性,各向异性介电和电导率有关的问题中操作张量代数。- 构建部分微分方程以解决MSE中的问题。- 应用矢量代数和部分微分方程来解决电磁方案中的问题。- 讨论结果不确定的实验。- 创建Python代码以实现数值方法并解决MSE中的问题。
新开设的课程: 课程名称:算子理论和算子代数 课程:博士(数学) 讲师:Harsh Trivedi 博士和 Ratan Giri 博士 学习目标:这是一门入门课程。它可应用于数学研究的几个领域,包括微分方程、量子统计力学、量子信息论和数学物理。它主要面向希望在算子理论、算子代数和相关领域进行研究的学生。 课程名称:李代数 课程:博士(数学) 讲师:Ashish Mishra 博士 学习目标:本课程介绍李代数理论。我们的目标是研究有限维复半单李代数的结构及其表示理论。李代数是一个重要的研究领域,在数学的各个领域有着广泛的应用,例如微分几何、组合学、数论、微分方程,以及物理学的许多领域,如量子力学和粒子物理学。为了给学生提供学习李代数高级主题的背景知识,本课程将从模块理论的介绍开始,特别介绍模块的张量积和张量代数的主题。本课程主要面向希望在李代数和相关领域进行研究的学生。
否积分:4单位I特殊功能:笛卡尔,圆柱形和球形极性坐标中Helmholtz方程的分离。Legendre函数:Legendre多项式,Rodrigue的公式;生成功能和递归关系;正交性和归一化;相关的Legendre功能,球形谐波。贝塞尔函数:第一类的贝塞尔函数,递归关系,正交性hermite函数:Hermite多项式,生成函数,递归关系;正交性。laguerre函数:laguerre和相关的Lauguerre多项式,递归关系;正交性。特殊功能在物理问题上的应用。10小时II单元矩阵:矢量空间和子空间,线性依赖性和独立性,基础和维度,革兰氏链式正交程序,正交,遗传学以及单位矩阵,特征值和特征值,eigenvectors,eigenvelors and eigenenvectors,ignalvelors of Matrices,diagonalization of Matrices,类似的物理化,应用程序,应用程序,应用于物理问题。积分变换:傅立叶变换:定义,傅立叶积分;逆变换;衍生物的傅立叶变换;卷积,parseval的定理;申请。拉普拉斯变换:定义,基本函数的变换,逆变换;派生的变换;变换的分化和整合;卷积定理;差分方程的解决方案;物理问题。物理中的张量。应用于分子光谱。10小时10小时单元III张量:线性空间,曲线坐标及其转换中的坐标转换;张量的定义和类型,逆转和协变量张量,对称和反对称张量,张量代数:平等,加法和减法,张量乘法,外产物;索引,内部产品,商定理,kronecker三角洲的收缩,张量的降低和升高,公制张量;基督教符号。10小时单位IV组理论:小组,子组和类;同构和同构,群体表示,可简化和不可约形的表示,Schur的引理,正交定理,表现形式,角色表的强度,将可还原的表现分解为不可减至的表征,代表性的构建,代表性的构建,谎言组,谎言组,旋转组,SO(2)等(3)。
代数和特征值分析。2。学习与矢量代数和微分方程有关的解决问题的工具。3。学习复杂分析和各种系列4的基础知识。获得有关张量的知识5。To acquire proficiency in integral transform UNIT I Vector Algebra and Calculus: Vector algebra, vector calculus, Green's theorem, Stokes' theorem, Linear algebra, Matrices: operations, determinants, eigenvalues and eigenvectors, diagonalization, linear systems, Cayley-Hamilton Theorem and its applications, Fourier series, Fourier transform.拉普拉斯变换。UNIT II Differential Equations and Special Functions: Linear ordinary differential equations, separable equations, integrating factor methods, linear equations, exact equations, homogeneous and non-homogeneous equations, solution methods (undetermined coefficients, variation of parameters), Runge-Kutta method, Bessel functions, Hermite functions, Legendre polynomials, Laguerre polynomials,这些功能的属性和应用。第三单元复杂分析:复杂分析,分析功能的要素; Taylor&Laurent系列;杆,残基和积分的评估。基本概率理论,随机变量,二项式,泊松和正常分布。中央限制定理。入门群体理论:SU(2),O(3)。单一组的年轻图及其对SU(2)和SU(3)的简单应用。单元IV张量分析:张量代数,线性组合,直接产品,收缩,张量密度,仿射连接的转换,仿射连接的转化,协变量,梯度,梯度,弯曲和差异,Unit-V Green的功能和群体的功能和群体理论:绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,对点的功能,点,点,绿色的功能,点,点,绿色的功能,点,绿色的功能,点,绿色的功能,点,以绿色的功能,点,以绿色的功能,绿色的功能,点,绿色的功能,点,以绿色的功能,点,绿色的功能,点,以绿色的功能,点,绿色的功能。球形极坐标膨胀,狄拉克三角洲函数。单元V积分转换:傅立叶积分,傅立叶变换定理,卷积定理,动量表示,传递函数,neumann系列,可分离内核,Hilbert-Schmidt理论。
2差异几何形状的评论5 2.1歧管,光滑的地图和切线空间。。。。。。。。。。。。5 2.2张量代数(一个点的张量)。。。。。。。。。。。。。。。。。9 2.3张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.4 Lorentzian度量和Lorentzian歧管。。。。。。。。。12 2.4.1简短的Intermezzo:Lorentz内部产品。。。。。。。。12 2.4.2 Minkowski空间。。。。。。。。。。。。。。。。。。。。。。。15 2.4.3索引升高和降低。。。。。。。。。。。。。。。。。16 2.4.4更多术语。。。。。。。。。。。。。。。。。。。16 2.4.5曲线的长度。。。。。。。。。。。。。。。。。。。。。16 2.4.6时间方向。。。。。。。。。。。。。。。。。。。。。。。17 2.4.7洛伦兹指标的存在。。。。。。。。。。。。。。。18 2.5矢量场和流。。。。。。。。。。。。。。。。。。。。。。。。19 2.6连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.7平行运输和测量学。。。。。。。。。。。。。。。。。。24 24 2.8扭转张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.9 Riemann曲率张量。。。。。。。。。。。。。。。。。。。。。。25 2.10 Levi-Civita连接。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.11绑带调整器的对称性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.12 ricci张量。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.13爱因斯坦方程。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.14异分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。28 2.15指数地图和正常社区。。。。。。。。31 2.16正常坐标。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.17本地洛伦兹几何形状。。。。。。。。。。。。。。。。。。。。。。。33