摘要:在之前的文章中,我们提出了一种新的量子引力 (QGR) 和宇宙学模型,称为 SU ( ∞ ) -QGR。该模型的公理之一是宇宙及其子系统的希尔伯特空间表示 SU ( ∞ ) 对称群。在这个框架中,经典时空被解释为表征代表希尔伯特空间的 SU ( ∞ ) 状态的参数空间。利用量子不确定性关系,可以证明参数空间(即时空)具有 3+1 维洛伦兹几何。本文在回顾了 SU ( ∞ ) -QGR(包括证明其经典极限是爱因斯坦引力)之后,将其与几个 QGR 提案进行了比较,包括:弦理论和 M 理论、圈量子引力和相关模型以及受全息原理和量子纠缠启发的 QGR 提案。目的是找到它们的共同和类似特征,即使它们似乎具有不同的作用和解释。希望这项练习能让人们更好地理解引力作为一种普遍的量子力,并阐明时空的物理性质。我们在所研究的模型中发现了几个共同的特征:二维结构的重要性;张量积的代数分解;SU ( 2 ) 群在其公式中的特殊作用;量子时间作为关系可观测量的必要性。我们讨论了如何在不同的模型中将这些特征视为类似。我们还表明它们在 SU ( ∞ ) -QGR 中出现,无需微调、额外假设或限制。
量子计算最有前途的应用集中在解决搜索和优化任务上,特别是在物理模拟、量子化学和金融等领域。然而,目前的量子软件测试方法在工业环境中应用时面临实际限制:(i)它们不适用于与行业最相关的量子程序,(ii)它们需要完整的程序规范,而这些程序通常无法获得,(iii)它们与 IBM 等主要行业参与者目前采用的错误缓解方法不兼容。为了应对这些挑战,我们提出了一种新颖的量子软件测试方法 QOPS。QOPS 引入了一种基于 Pauli 字符串的测试用例的新定义,以提高与不同量子程序的兼容性。QOPS 还引入了一种新的测试 oracle,它可以直接与 IBM 的 Estimator API 等工业 API 集成,并可以利用错误缓解方法在真实的噪声量子计算机上进行测试。我们还利用泡利弦的交换特性放宽了对完整程序规范的要求,使 QOPS 可用于在工业环境中测试复杂的量子程序。我们对 194,982 个真实量子程序进行了 QOPS 实证评估,与最先进的程序相比,它在测试评估中表现出色,F1 分数、准确率和召回率都堪称完美。此外,我们通过评估 QOPS 在 IBM 的三台真实量子计算机上的性能来验证其工业适用性,结合了工业和开源错误缓解方法。
N 量子比特系统的多体纠缠态。我们在本文中提出的实验方案基于一个新的可精确解的时间相关 N 量子比特模型。[33] 参考文献 [33] 具有更多的推测性,它的范围集中在一个时间相关的多体自旋模型的呈现上,该模型主要侧重于 N 量子比特之间设计的 N 向耦合的特性。在本文中,我们使用一个时间相关的模型,该模型经过量身定制,可以牢牢锚定在最适用于量子信息和计算的两个最突出的物理系统上:囚禁离子和超导量子比特。事实上,该模型的设计首先考虑了所有完善的协议,用于有效地再现涉及系统所有量子位的 N 体相互作用( N 向相互作用),无论是在囚禁离子 [34,35] 还是超导量子位系统 [36] 中;其次,能够在超导量子位的情况下仅执行单量子位操作 [36],并在囚禁离子的情况下通过扫描隧道显微镜 (STM) 技术,原则上随意将有效的时间相关场施加到一个量子位上。[37–39]
翼型内部 Ra Ra 冷却设计 喷漆后状态(微米) (微米) 基线叶片 翼展方向 5.0 + 0.6 1.4 + 0.3 弦向 5.7 + 1.7 1.5 + 0.4 基线叶片 翼展方向 3.6 + 0.8 0.8 + 0.15 弦向 3.8 + 0.6 1.0 + 0.2 NETL 双壁 翼展方向 1.1 + 0.2 1.0 + 0.3 弦向 1.1 + 0.15 0.7 + 0.3 平均值 + 2 个标准差
2021年3月,摘要澳大利亚的国家电力市场在世界上最长,最弦的传输网络之一中运营。2016 - 2020年的投资超级循环(其中有13,000兆瓦的可再生能源)逐渐揭示了可再生工厂网络托管能力的限制。在本文中,分析了由超级循环引起的副作用。可再生投资失败的大多数来源与系统强度恶化有关,即。相关的连接滞后,补救和削减成本。尽管一个多区域市场,但NEMS的位置投资信号仍然明显强大。更改节点安排可能会提高调度效率,但更大的政策问题正在迅速降低网络托管能力的新可再生能源,不完善的调节和与增强相关的监管滞后。市场参与者寻求比监管框架允许的更快。可再生能源区(REZ)通过i)进行了检查。由消费者资助的监管模型和II)。可再生发电机资助的市场模型。“超大规定的夹层”设施被视为REZ资本资金的关键要素。它构成了优化基于市场的REZ传输增强和中等赞助商瞬态不足的风险的手段。关键词:电力,可再生能源区,传输投资,位置投资信号。JEL分类:D25,D80,G32,L51,Q41。该工作文件的同行评审版本随后发表为:Simshauser,P。(2021),“澳大利亚国家电力市场的可再生能源区”,《能源经济学》,第101卷,第105446页。
超快激光脉冲在介电时的贝塞尔束在空间形状上形成,产生了高纵横比等离子体通道,其松弛会导致纳米渠道的形成。我们报告了纳米渠道钻孔效率的强烈增强,并通过双脉冲在10至500 ps之间的延迟隔开。这使直径降低到100 nm的纳米通道形成。实验吸收测量结果表明,钻井效率的增加是由于能量沉积的结果增加所致。纳米通道的形成对应于第二脉冲吸收的急剧变化,证明了第一个脉冲产生的相变发生。这会产生一个高度吸收的长期状态。我们的测量结果表明,它与第一个激光脉冲照明后<10 ps的时间尺度内发生的温暖玻璃的半度性化兼容。
• . • 距离(这是从桥面上游侧到桥梁外侧上游和下游外侧横截面的距离) • 沿流动方向的桥面宽度 • 过道路流量的堰系数 • 站(沿桥面/道路从左到右的距离)、桥面上游侧和下游侧的高弦和低弦高程
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
弦理论一直是理论物理学中兴奋的主要来源。该理论在过去的四十年中发展了,希望提供“一切理论”,从而用令人难以理解的小弦来解释所有问题和力量。但是,新的见解为理论通过应用方式发展提供了另一种途径。研究最多的应用之一是超导性。在实验室中,已经发现,如果将特定的金属冷却至足够低的温度,电流将能够在绝对没有电阻的情况下流动。到目前为止,还没有综合理论来解释这种情况的发生。在本演讲中,我将讨论弦理论可以为我们对超导体的理解提供什么,以及如何根据十维黑洞来衡量量子力学规则。