摘要 目的。脑皮层电图 (ECoG) 阵列对大脑施加的力在弯曲以匹配颅骨和大脑皮层的曲率时表现出来。这种力量会对患者的短期和长期结果产生负面影响。在这里,我们提供了一种新型液晶聚合物 (LCP) ECoG 阵列原型的机械特性,以证明其更薄的几何形状可以减少可能施加到大脑皮层的力。方法。我们构建了一台低力弯曲试验机来测量 ECoG 阵列弯曲力,计算其有效弯曲模量,并近似计算它们可以对人脑施加的最大力。主要结果。经测试,LCP ECoG 原型的最大力比任何市售 ECoG 阵列的最大力小 20%。然而,作为一种材料,LCP 的刚性比传统上用于 ECoG 阵列的硅胶高出 24 倍。这表明较低的最大力是由于原型的轮廓较薄(2.9 × –3.25 ×)。重要性。虽然降低材料刚度可以降低 ECoG 阵列表现出的力,但我们的 LCP ECoG 阵列原型表明,柔性电路制造技术也可以通过减小 ECoG 阵列厚度来降低这些力。必须对 ECoG 阵列进行弯曲测试才能准确评估这些力,因为聚合物和层压板的材料特性通常与尺度有关。由于所用的聚合物是各向异性的,因此弹性模量不能用于预测 ECoG 弯曲行为。考虑到这些因素,我们使用了四点弯曲测试程序来量化 ECoG 阵列弯曲对大脑施加的力。通过这种实验方法,可以设计 ECoG 阵列以最大限度地减少对大脑施加的力,从而可能改善急性和慢性临床效用。
Mechanical properties (tensile strength (TS), modulus of elasticity in tensile (MET), flexural strength (FS), modulus of elasticity (MOE)) of the material to be obtained depending on the production parameters in the production of high-density polyethylene (HDPE) wood-polymer composites with Scots pine wood flour additive were predicted using Artificial Neural Networks (ANN) model and without破坏性测试。在研究的第一阶段,使用来自56种不同研究的有关木材聚合物复合材料的机械性能的不同研究开发了ANN模型。在第二阶段,为了确定模型的可靠性,使用未在模型的训练和测试中使用的输入参数估算输出值。基于相同的输入参数,产生了测试样品,并进行了机械测试。通过考虑平均绝对百分比误差(MAPE)值来比较从实验和ANN模型中获得的结果。在ANN模型的训练和测试阶段获得的测定系数(R 2)值均高于0.90。通过这种方式,ANN模型成功预测了木材聚合物复合材料的机械性能。由于从机械测试获得的大多数MAPE值低于10%,因此该模型被认为是可靠的模型。doi:10.15376/biores.19.3.4468-4485关键字:拉伸强度;弯曲力;弹性模量; HDPE; MAPE联系信息:A:Safranbolu的互助设计系,Safranbolu西YılmazDizdar职业学校,卡拉布克大学,Safranbolu/Karabuk,土耳其; B:土耳其卡拉布克大学卡拉布克大学技术学院工业设计工程系;答:土耳其杜兹克大学的林产品工业工程,杜兹斯大学林业教师; *通讯作者:altayeroglu@karabuk.edu.tr简介