在宏观世界中,我们经常将对环境中物体的操纵视为理所当然。然而,在微观/naiScale上,材料和结构对材料和结构的精确和受控的改变,处理或行动(即操纵)具有高度挑战性,并且由于这些长度尺度上主导相互作用力的缩放效应和增加的复杂性[1],需要新的材料和方法。智能材料(也称为智能或刺激性响应材料)已经改变了各种多学科领域[2],提供了新的可能性,以重新填补我们与小规模世界的互动。它们具有响应各种外部刺激的独特能力,包括热,电气,机械,光学,磁信号,并相应地调整其内在特性[3](图。1)。这种响应能力使他们能够自我实现,自sense,自适应,自我修复甚至自我诊断,这共同赋予他们创建各种智能设备的潜力[4]。在各种智能软材料中,响应各种刺激的变形行为是其功能的关键方面[5]。可以通过各种手段来启动这种变形,包括磁性[6]和声学[7]力或固有性能的替代力,例如水凝胶的亲水/疏水过渡[8]和固定性向异位性液体水晶elas-elas-tomers(lce)[9] [9] [9] [9]。尤其是,通常采用各向异性特性的引导来提高所得变形。以实现所需的变形,通常将功能添加剂(例如磁性和导电颗粒)掺入聚合物基质中[10]。例如,LCE与特定的分子比对进行了精心处理[9],并且轴向排列的LCE沿分子比对表现出收缩(主管)和垂直于主任的扩展。更多,在石墨烯/藻酸盐/藻酸盐制成的纳米复合材料[11]的情况下,由于石墨烯的局部区别对齐,弯曲变形是对刺激的响应。智能材料表现出的这些变形是在微观/纳米级操纵物体的有效催化剂。他们独特的属性