在回归分析中,具有非零系数的协变量被认为是真实信号,而系数为零的协变量被认为是错误信号。在人口模型中,这种区别是明确的,类似于“黑白”场景。然而,在有限样本中,微小的非零系数的存在引入了“灰色”区域,模糊了真和假信号之间的界线。1这个灰色区域代表弱信号,可以对结果变量产生可忽略的影响。对弱信号的调查对经济和财务决策具有切实的影响。通常,这些弱信号的集体影响推动了这些领域的结果。支持这一点,图1提供了一种经验的观点,展示了R 2值,从经济学和金融杂志汇编中收集了2022年发表的文章。这些R 2值的25%分位数的经济学为9.7%,金融为5.8%,这表明这些学科的模型经常依赖于具有适度解释力的协变量。此外,图1仅着眼于已发表的论文,这些论文可能偏向于由于选择偏差而引起的R 2值的研究。这表明弱信号的存在可能比这里指出的数据更为广泛。将弱信号纳入回归模型中的决定充满了过度拟合的危险,这会破坏预测性能。当与估计这些弱信号的系数相关的错误大于减少其包容性偏见的好处时,就会出现此问题。包括这些变量,或者不从而取决于偏见和差异之间的权衡。加剧了这一挑战是在数据丰富的环境中经常遇到的高维协变量的越来越多的流行率,这是由于样本量相对于协方差的维度而言,这种情况可能会进一步加剧预测错误。机器学习方法以强调可变选择和降低尺寸而闻名,已被证明有效地减轻了过度拟合和检测错误信号的真实信号,尤其是当真实信号很强时。这些方法采用正则化技术,例如惩罚模型参数的ℓ1或ℓ2规范,以实现这一目标。出现一个关键的问题:机器可以学习弱信号,换句话说,它们是否可以超过天真的零估计器?零估计器旨在忽略所有协变量,在弱信号的背景下用作被动基线。如果估算器设法超过了这一基线,则意味着它有效地学习了有价值的信号。相反,未能
未来事件:影响国家发展的弱信号和外卡 Giofianni Diglio Peirano Torriani Ceplan 董事会主席 国家战略规划中心 Luis Enrique de la Flor Saenz Ceplan 执行董事 Jordy Vilayil Vílchez Astucuri 国家预测和战略研究主任 技术团队:Evelin Quispe Giron、Yiem Aurora Ataucusi Ataucusi、Hans Stehli Torrecilla 和 Angie Betsi Ayzanoa Alca。编辑:国家战略规划中心 Av. Canaval y Moreyra 480,21 楼 San Isidro,秘鲁利马 (51-1) 211-7800 webmaster@ceplan.gob.pe www.ceplan.gob.pe @All rights reserved 2023 年 11 月
摘要:详细研究与可再生能源有关的学术研究主题的分布是结构化的,以及哪些主题将来可能会受到新的关注,以便科学家为发展可再生能源的发展做出贡献。这项研究使用先进的概率主题建模来通过使用2010 - 2019年的学术摘要来统计地检查可再生能源主题的时间变化,并从未来符号(例如弱信号)的角度探讨主题的属性。在强大的信号中,将最佳的可再生能源整合到电网中的方法非常关注。在弱信号中,对氢,超级电容器和压缩空气储能等大容量存储系统的兴趣显示出很高的增加速度。在不张开但知名的信号中,已经包括了全面的主题,例如可再生能源潜力,障碍和政策。这项研究的方法不仅适用于可再生能源,而且适用于其他受试者。
摘要。由于神经元结构的复杂性和某些区域的极弱信号,从大规模光学显微镜图像中重建神经元是一项具有挑战性的任务。传统的分割模型建立在 vanilla 卷积和体素损失的基础上,难以在稀疏的体积数据中建模长距离关系。因此,特征空间中的弱信号与噪声混合,导致分割中断和神经元追踪结果过早终止。为了解决这个问题,我们提出了 NeuroLink,为网络添加连续性约束,并利用多任务学习方法隐式地模拟神经元形态。具体来说,我们引入了动态蛇形卷积来提取神经元稀疏管状结构的更有效特征,并提出了一种易于实现的基于形态的损失函数来惩罚不连续的预测。此外,我们指导网络利用神经元的形态信息来预测神经元的方向和距离变换图。我们的方法在低对比度斑马鱼数据集和公开可用的 BigNeuron 数据集上实现了更高的召回率和准确率。我们的代码可以在https://github.com/Qingjia0226/NeuroLink上找到。
信号信号是潜在的未来发展的早期指标。信号通常是微妙的,最初可能是随机或微不足道的,但是它们可以对新兴趋势和破坏提供宝贵的见解。通过识别和分析薄弱的信号,组织可以预测变化并相应地调整其策略。芬兰为什么会收集信号?对于芬兰商业客户,弱信号在计划中可以发挥至关重要的作用。他们帮助公司:确定新兴的机会和风险:弱信号可以突出新的市场机会或潜在的威胁,而潜在的威胁可能尚不明显,而传统趋势分析可能尚不明显。这使公司可以主动解决这些变化并保持领先地位。增强战略性的远见:将弱信号纳入战略规划中有助于确保战略敏捷且适合未来。通过定期扫描弱信号,公司可以验证和调整其战略远见计划,以保持相关和有效。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
生产和供应预测。在短期内,在运行命令或交货时,集成外部操作数据以在机动空间内具有空间也很重要。实时监控工具快速检测变化已有几年了。基于弱信号(通常称为控制塔)的警报系统可以帮助识别风险并相应调整操作和预测。除了直接恢复的数据之外,外部专家和市场分析师小组的招标还可以提供其他信息来完善预测模型。供应链上的干扰可能随时发生。这些事件的集成当然是服务的技术挑战,但对于公司的所有服务而言,这首先是人类的挑战。
从架构上看,最初在月球上部署椭圆形冻结轨道上的中继卫星将最大限度地覆盖南极,这是 Artemis 计划的重点。我们建议这些资产和未来的地面资产建立一个自由运行的自主时间尺度(我们称之为“LTC”),并持续监测与 UTC 的差异。这比在月球上部署 UTC 本身更可取,因为后者将涉及克服处理闰秒和闭环跟踪显著时变相对论效应的不必要挑战。月球服务提供商应通过各种技术确定其轨道和时间,包括现有的 CCSDS 测距标准、DSN 跟踪、弱信号 GPS 接收和高质量原子钟。这些资产反过来将为月球用户提供 LNIS 标准的 PNT 服务。
在建筑上,在椭圆形冰冻轨道中接力卫星的最初月球部署将最大程度地提高对月南极的覆盖范围,这是Artemis计划的重点。我们建议这些资产和未来的表面资产,以建立一个自主时间尺度(我们称为“ LTC”),与UTC不断监视的差异。这是在月球上部署UTC本身的优势,这将涉及克服不必要的挑战,以处理LEAP秒和闭环跟踪重要的时变性相对论效应。月球服务提供商应通过各种技术建立其轨道和时间,包括现有的CCSD标准,DSN跟踪,弱信号GPS接收和高质量的原子钟。这些资产反过来将为月球用户提供LNIS标准PNT服务。
1. 简介 低噪声放大器 (LNA) 是无线通信中常用的 RF 接收器的主要模块和第一级。它常用于放大接收天线接收到的弱信号。LNA 的内部噪声极小,因此对系统噪声的影响并不大 [1]-[2]。由于 LNA 是 RF 前端接收器的主要部分,因此在设计 LNA 时应考虑低噪声系数 (NF) 和高增益等规格,以保持整体接收器 NF 较低。LNA 在通信领域有许多应用,例如无线通信、天文学应用、雷达和卫星通信、电信等。增益、噪声系数、输入回波损耗和输出回波损耗是 LNA 的基本规格。为了表示这些规格,使用放大器的 S 参数。除了这些特性之外,设计 LNA 时还需要考虑的其他一些特性包括线性度、稳定性、带宽和功率耗散。