ARP Advancing Renewable Program AVR Automatic Voltage Regulator CSCR Composite Short Circuit Ratio DFIG Doubly-Fed Induction Machine DFT Discrete Fourier Transform ESCR Equivalent Circuit Based Short Circuit Ratio GA Genetic Algorithm GFMI Grid Forming Inverter GFLI Grid Following Inverter GIH Grid Innovation Hub HSS Hyper-Spherical Search HVDC High Voltage Direct Current ISP Integrated System Plan MPM Matrix Pencil Method NEM National Electricity Market OEM Original Equipment Manufacturer PEC Power Electronic Converter PLL Phase-Locked Loop PMU Phasor Measurement Unit PoC Point of Connection PSCAD Power System Computer Aided Design RMS Root Mean Square RoCoF Rate of Change of Frequency SCR Short Circuit Ratio SynCon Synchronous Condenser TNSP Transmission Network Service Provider VSC Voltage Source Converter VSG Virtual Synchronous Generator WSCR加权短路比
训练高准确的3D检测器需要使用7个自由度的大规模3D注释,这是既易于且耗时的。因此,提出了点符号的形式,为3D检测中的实践应用提供了重要的前景,这不仅更容易且价格便宜,而且为对象定位提供了强大的空间信息。在本文中,我们从经验中发现,仅适应其3D形式并非遇到两个主要的瓶颈是不算气的:1)它未能在模型中编码强3D,而2)它由于极端的Spars sparsity而产生了低质量的pseudo pseudo Labels。为了克服这些挑战,我们引入了Point-Detr3D,这是一个弱小的半监督3D检测的教师学生框架,旨在在限制的实例注释预算中充分利用点的监督。与点 - dive不同,该点仅通过点编码器编码3D位置信息,我们提出了一个显式的位置查询初始化策略,以增强先验性。考虑到教师模型产生的遥远区域的伪标签质量低时,我们通过通过新型的跨模式可变形ROI融合(D-ROI)结合了密集的图像数据来增强探测器的感知。此外,提出了一种创新的点指导的自我监督学习技术,即使在学生模型中,也可以完全利用点的先验。与代表性的Nuscenes数据集进行了广泛的实验,证明了我们的观点 - DETR3D与前所未有的作品相比获得了显着改善。值得注意的是,只有5%的标记数据,Point-detr3d的完全超级可见的对应物的性能超过90%。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
细胞在超低强度下发出光:由细胞代谢产生的光子,与其他光发射过程(例如延迟发光,生物发光和化学发光)不同。这种现象是通过大量名称知道的,包括但不限于生物植物,生物自动发光,代谢光子发射和Ultraweak Photon发射(UPE),后者应用于本次审查的目的。值得注意的是,生产时的光子既不是“弱”,也不是特定的特征生物学。对UPE的研究经历了漫长而又破烂的过去,历史上由于缺乏足够敏感的技术而陷入困境。今天,随着技术的迅速发展,检测和图像这些光子以及描述其功能变得更加容易。在这篇简短的综述中,我们将研究UPE研究的历史,其提出的机制,可能的生物学作用,对现象的检测以及潜在的医疗应用。
调查显示,通过减少从电源(公共电网)到负载(服务器卡)的关键电流路径中所需的电源转换次数,可以提高典型配电架构的可靠性和效率。然而,将电源转换减少到单点转换会产生不利影响。可靠性降低,因为它使配电更容易发生故障。实施冗余配电架构解决了这一弱点。在这方面,直流配电架构具有最大的优势,因为它只需要两次电源转换,而交流配电架构则需要四次。文献中报告的效率改进范围为 10% 到 20%。此外,研究发现,直流配电对于连接新兴的现场发电和储能技术具有最大的优势,因为这些设备中的很大一部分以直流或高频交流电供电,当连接到传统交流配电系统时,需要间歇性直流转换。
为了给舰载机的适航性提供参考,本文对尾喷流场及其对飞行甲板的影响进行了研究。首先建立了航空母舰和舰载机的几何模型,并在此基础上划分了非结构化四面体网格进行数值分析。然后,本文对4架舰载机在舰首准备起飞时尾喷流场进行了数值模拟,以评估其对喷气导流板(JBD)和飞行甲板的影响。分析过程中采用了标准k-ε方程、三维N-S方程和计算流体力学(CFD)理论。在求解方程时,还考虑了风和射流的热耦合。利用CFD软件FLUENT模拟给出了速度和温度分布。结果表明:(1)该解析方法可以用于模拟具有复杂几何模型的气动问题,且结果可靠性高;(2)通过分析可以优化安全工作区、JBD安装方案和起飞位置布置。
摘要。中子个人剂量计响应函数的测量通常涉及一系列非常广泛的测量,这些测量使用加速器产生的单能中子。这些测量成本高昂,对于希望研究其剂量计的剂量测定服务来说,通常不切实际,特别是当他们试图改善剂量计响应并希望研究设计或处理中各种变化的影响时。描述了一种技术,利用中子产生反应(例如 7Li(p,n)7Be 和 T(p,n)3He)的中子能量随角度的变化,在一次实验中将多个剂量计照射到一定范围的能量中。本报告描述了三个场的特性,特别是能量密度的角度分布,覆盖了 101 至 250 ke V、336 至 565 ke V 和 561 至 1200 ke V 的能量范围,它们之间覆盖了快中子个人剂量计检测灵敏度具有阈值的重要能量区域,并且有关响应函数的详细信息尤为重要。注意:本报告中引用的所有不确定性都是标准 (10) 不确定性的估计值,代表置信度约为 67%。
液晶作为一种优良的电光材料,具有效率高、工作光谱范围广、可采用多种外场刺激(如电场/磁场、光照、热量)等优点,被广泛应用于光场调制。此外,其他材料如二氧化硅和一些氧化物基超表面、超材料、光子晶体、铌酸锂基非线性晶体等也在光场调制中发挥着独特的优势。关键词: - 光场调制 - 空间结构光束 - 相位 - 振幅 - 偏振 - 空间光调制 - 时域调制 - 频率调制 - 液晶
本课程进一步建立在自然的量子力学描述中,如量子力学1和2中的早期所研究。重点是量化具有多个自由度的系统或连续限制的现场理论。由此产生的量子场理论描述了一种普遍的结构,该结构在许多情况下出现,其中连续描述适当。主要用作基本粒子物理语言的主要用途,也是量子重力模型的基础(例如,字符串理论),量子场理论也与描述固态物理学中的关键现象有关。用量子电动力学(QED)作为主要例子说明了这些概念。重点是理解物理概念及其与数学模型的关系。
CIP 代码 描述 2017 2018 2019 2020 计算机与信息科学 11.01 计算机与信息科学,综合 223 217 186 184 11.02 计算机编程 7 4 20 12 11.07 计算机科学 5 4 10 24 11.08 计算机软件与媒体应用 1 3 4 1 11.1 计算机/信息技术管理 85 44 80 70 队列总计 321 272 300 291 工程 14.01 工程,综合 87 84 67 84 14.05 生物医学/医学工程 13 15 20 10 14.07 化学工程 61 72 65 58 14.08 土木工程 66 67 68 66 14.09 计算机工程 42 45 39 35 14.1 电气、电子和通信工程88 83 75 57 14.13 工程科学 13 14 20 11 14.19 机械工程 128 126 136 112 14.23 核工程 17 23 26 23 班级总计 515 529 516 456 工程/工程相关技术 15.12 计算机工程技术 4 2 9 3 15.13 制图/设计工程技术 43 55 52 14 15.17 能源系统技术 25 4 12 24 班级总计 72 61 73 41 数学与统计学 27.01 数学 60 68 125 121 27.05 统计学 18 23 16 14 班级总计 78 91 141 135 物理科学 40.01 物理科学综合 14 24 19 17 40.02 天文学与天体物理学 13 4 7 5 40.05 化学 50 52 50 42 40.08 物理学 34 59 61 49 40.1 材料科学 14 16 14 11 班级总计 125 155 151 124 机械与维修技术/技师 47.06 汽车维护与维修技术 210 194 207 188 班级总计 210 194 207 188 精密生产 48.05 精密金属加工 125 119 137 122 班级总计 125 119 137 122 地区总计 1,446 1,421 1,525 1,357