烷烃和烯烃是高价值的平台化学品,可由微生物合成,利用来自农产品工业和市政的有机残留物,从而为资源回收提供另一种机会。目前烷烃和烯烃生物合成的研究和技术进步主要受到产品滴度低的阻碍,阻碍了生物工艺的升级和大规模应用。因此,当前的科学研究旨在通过利用各种微生物底盘中的天然和工程代谢途径来抑制竞争代谢途径,并结合生物工艺优化来提高生产力。此外,为了降低成本,正在研究利用二氧化碳等无机碳源来促进烷烃和烯烃的绿色合成。因此,本综述批判性地讨论了烷烃和烯烃生物合成的机遇和挑战,旨在研究当前的技术进步。在这篇综述中,彻底讨论了烷烃和烯烃生物合成的五种主要代谢途径的局限性,并强调了它们的缺点。此外,还研究了各种技术,包括代谢工程、自养代谢途径和新的非生物合成途径,作为提高产品滴度的潜在方法。此外,本综述对烷烃和烯烃生物合成的经济和环境方面提供了宝贵的见解,同时也为未来的研究方向提供了展望。
另一方面,基因组测序技术的进步不仅允许如上所述进行早期诊断,而且还彻底改变了治疗和药物的发展。传统药物的开发阻止或促进引起疾病发作的蛋白质和代谢级联反应的标准化,无论是小分子还是生物制药,在时间,劳动和成本上都非常强。但是,通过鉴定病原基因,可以将药物的靶靶本身从蛋白质转换为DNA(基因表达)或RNA(转录本),以及核酸(核酸药物和基因治疗药物)可以使用来识别靶标,从而使其更易于设计药物分子。同时,2013年发表的CRISPR-CAS9基因组编辑方法使修改靶基因序列非常容易,该靶基因序列以前很难,并进一步将上述核酸处理推向下一阶段。修改时,您只需发送与要修改的序列相对应的引导RNA(GRNA),并将其切割的cas9蛋白裂解以以某种方式促进对靶细胞或基因的修饰。但是,为了真正利用包括CRISPR-CAS9在内的基因组编辑技术进行实际处理,需要克服许多问题,例如脱靶问题和CAS9抗体的产生。表演者首先发现,当引起感染性疾病的细菌获得对抗生素的抵抗力时,该病毒已通过使用极其奇怪的机制来抗药性,即在基因组中创建新基因:自我基因组编辑机(Podir System(Podir System)(申请人)(由申请人命名),并通过实验证明了这种机制在所有机制中都存在于所有生物中,这些机制既有生命的生命有机疾病,又有生物是生物。根据设计的人为地编辑基因组的序列,并开发了一种全新的概念国内基因组编辑方法:ST方法可以实现非常准确的基因组编辑,并且可以在本演讲中启用个人的能力
摘要。文章分析了当前媒体话语中新技术语言形象的重构,其中神经网络和人工智能(AI)的讨论已成为主流趋势。作者在“人工智能”专题组中首次运用复杂话语、语料库方法和内容分析来构建语义场和微场。根据获得的数据,媒体呈现的AI主题领域的节点是“技术”、“智力活动的算法”、“当前系统”和“与人类竞争的演员”集群。搭配分析使得确定人工智能在社会、经济、科学、技术和创意领域的概念化成为可能。强调了智能与理性(人工与机器)之间的显着对立。所分析的人工智能以三种形式出现:强人工智能、弱人工智能、个人人工智能。强人工智能占上风,提名中的主题占据主导地位就证明了这一点。在媒体话语中,机器被拟人化,被赋予了理性、意识和潜意识、记忆、情感,成为一个能够做出决策并创造新的智力价值的世界大脑,这通过兼容性和语境同义词来证明。在对“人工智能”、“科技”、“风险”主题组交叉点的分析中,作者看到了进一步的研究前景。
散斑是一种干涉现象,由相干照明从物体平面的光学粗糙表面散射而产生。传播到光瞳平面后,背向散射的光线自干涉形成亮斑和暗斑,这些斑块被称为“散斑”。假设照明为准单色,且表面高度变化超过光波长的一半,则散斑图案将“完全显现”,对比度趋于一致。在非合作定向能应用中,散斑充当乘性噪声,对图像质量[2]和轨迹质量[3]产生有害影响。给定一个扩展信标,自适应光学系统必须分别感测和校正大气引起的相位像差(导致闪烁)和物体引起的相位像差(导致散斑)。然而,波前传感器(在自适应光学系统内)实际测量和重建的是来自两个相位像差源的路径积分贡献的总和。例如,夏克-哈特曼波前传感器 (SHWFS) 使用单独的小透镜将接收器孔径划分为子孔径,这些子孔径对入射波前进行采样,并将样本聚焦到探测器阵列上。
由于随机噪声的正则化作用,提出了对平均值相互作用粒子系统的定量熵类型传播。与现有结果相对熵的混乱传播的现有结果不同,我们取代了相互作用粒子的初始分布与限制McKean -Vlasov SDES的有限相对熵,而有限的L 2 -Wasserstein距离 - 在某种意义上削弱了初始条件。Furthermore, a general result on the long time entropy-cost type propagation of chaos is provided and is applied in several degenerate models, including path dependent as well as kinetic mean field interacting particle system with dissipative coeffcients, where the log-Sobolev inequality for the the distribution of the solution to the limit McKean-Vlasov SDEs does not hold.
增强现实(AR)技术为人类机器人互动提供了一种令人兴奋的新媒介,为隐式和明确的人类机器人沟通带来了新的机会。例如,这些技术使身体受限的机器人能够执行非语言相互作用模式,例如Deictic手势,缺乏这样做所需的物理形态。但是,大量的HRI研究表明了物理体现的真正好处(与屏幕上的虚拟机器人相比),暗示虚拟机器人零件的AR增强可能面临挑战。在这项工作中,我们提供了经验证据,比较了使用虚拟(AR)和物理臂来执行识别虚拟或物理引用者的神性手势。我们的主观和客观结果证明了混合现实的神性手势在克服这些潜在局限性方面的成功,无论手势和参考方之间的身体差异如何,它们的成功使用。这些结果有助于激发混合现实机器人系统的进一步部署,并为混合现实技术在HRI环境中的作用提供细微的洞察力。
我们研究了具有lim的计算能力的移动剂之间分布式网络形成的基本问题,旨在通过以对等方式无线传输和接收能量来实现能量平衡。特别是,我们设计了由少数状态组成的简单分布式协议以及形成任意和k -ary树网络的交互规则。此外,我们(理论上和使用计算机模拟)评估了很多能量再分配方案,这些协议可以利用不同的知识水平,以便在媒介之间实现所需的能量分布,要求每个代理具有至少或至少具有高度深度固定剂的两倍。我们的研究表明,如果不使用有关网络结构的任何知识,就无法及时实现此类能量分布,这意味着在重新分配过程中可能会有很高的能量损失。另一方面,只有几个额外的信息似乎足以保证与满足特定特性的能源分布的快速收敛,从而产生低的能量损失。
其中 D μ 是弯曲时空中的协变导数。在这种情况下,m 根本不是一个乘法因子,而是克莱因-戈登方程中的特征。在这种背景下,有建议认为量子流体(超导体、超流体、量子霍尔流体、玻色-爱因斯坦凝聚体)的性质可能会增强与引力波的相互作用,从而导致超流体成为引力天线的介质[1-7],超导电路作为引力波探测器[8]、换能器[9,10]和镜子[11-13]。这些想法并非没有引起争议[14-16]。原因是许多这些想法启发性地应用了量子粒子违反 WEP 的概念。这促使我们为引力波中的量子粒子提供更严格的 WEP 特征。WEP 认为自由落体轨迹应该与质量无关,可以重新表述为自由落体物体的 Fisher 信息与质量不变的陈述 [ 17 ]。在这个信息论框架中,违反 WEP 意味着人们可以提取有关自由落体物体质量的信息。WEP 的这种信息论表述具有以下优势:它可以以明确的方式扩展到量子物体。具体而言,Fisher 信息给出了可观测随机变量提供的有关未知参数的信息量。在我们的例子中,随机变量是粒子 x 的位置,未知参数是其质量 m 。对于具有波函数 ψ( x , t ) 的粒子,Fisher 信息为
摘要 - 本文提出了一个基于变压器的新型框架,旨在通过生成精确的特定于类的对象定位图作为伪标签来增强弱监督的语义细分(WSSS)。在观察到标准视觉变压器中的单级令牌区域的观察基础上可以促进类不足的定位图,我们探索了变压器模型通过学习多个类代币来捕获类别歧视对象定位的特定于类别歧视对象的特定歧视对象的潜力。我们引入了一个多级令牌变压器,该变压器结合了多个类令牌,以启用与贴片令牌的类感知相互作用。为了实现这一目标,我们设计了一种班级感知的培训策略,该策略在输出类令牌和地面实际类标签之间建立了一对一的对应关系。此外,提出了一个对比类别(CCT)模块来增强判别类令牌的学习,从而使模型能够更好地捕获每个类别的独特特征和特性。结果,可以通过利用与不同类代币相关的类键入浓度来有效地生成类歧视对象定位图。为了进一步完善这些定位图,我们提出了从斑块到斑块变压器注意的斑块级成对亲和力的利用。此外,提出的框架无缝补充了类激活映射(CAM)方法,从而在Pascal VOC 2012和MS Coco 2014数据集中显着改善了WSSS性能。这些结果强调了类令牌对WSSS的重要性。代码和模型在此处公开可用。
在这个例子中,AI 检测到实际室温低于设定点(太冷),送风流量为零,尽管送风挡板 100% 打开。哦,它不比人类聪明。是的,我们需要人类编写程序来告诉我们检查。在什么时候?这个错误报告给了空调工程师。任何读过这篇文章的人可能也会发现这个缺点。但使用人工智能最重要的优势是,你编写的程序只需要执行一次。它会一直这样进行故障检测,永不停歇,永不疲倦。永远不会感到无聊,每天都要与建筑物中的数千台 VAV 箱一起工作。当检测到故障时,AI 还可以进行故障诊断,例如导致故障的原因。在这个例子中,从皮托管到压力传感器的压力测量管松动,导致压力读数为零。VAV 箱也会将空气流量视为零。起初,AI 对此并不擅长,不知道错误是什么。但我们人类逐渐教会 AI,如果它遇到此数据的错误,那应该是由此引起的。如果数据出现这种错误,很可能是因为AI的记忆力超强,它不会忘记,而是不断积累知识。不断进步随着时间的推移,AI再次发现了同样的错误。可以诊断错误已更正可以说出导致错误的原因以及如何修复它。自动故障检测和诊断(AFDD)将发挥作用。肯定更多的是空调工程