我们研究了具有lim的计算能力的移动剂之间分布式网络形成的基本问题,旨在通过以对等方式无线传输和接收能量来实现能量平衡。特别是,我们设计了由少数状态组成的简单分布式协议以及形成任意和k -ary树网络的交互规则。此外,我们(理论上和使用计算机模拟)评估了很多能量再分配方案,这些协议可以利用不同的知识水平,以便在媒介之间实现所需的能量分布,要求每个代理具有至少或至少具有高度深度固定剂的两倍。我们的研究表明,如果不使用有关网络结构的任何知识,就无法及时实现此类能量分布,这意味着在重新分配过程中可能会有很高的能量损失。另一方面,只有几个额外的信息似乎足以保证与满足特定特性的能源分布的快速收敛,从而产生低的能量损失。
其中 D μ 是弯曲时空中的协变导数。在这种情况下,m 根本不是一个乘法因子,而是克莱因-戈登方程中的特征。在这种背景下,有建议认为量子流体(超导体、超流体、量子霍尔流体、玻色-爱因斯坦凝聚体)的性质可能会增强与引力波的相互作用,从而导致超流体成为引力天线的介质[1-7],超导电路作为引力波探测器[8]、换能器[9,10]和镜子[11-13]。这些想法并非没有引起争议[14-16]。原因是许多这些想法启发性地应用了量子粒子违反 WEP 的概念。这促使我们为引力波中的量子粒子提供更严格的 WEP 特征。WEP 认为自由落体轨迹应该与质量无关,可以重新表述为自由落体物体的 Fisher 信息与质量不变的陈述 [ 17 ]。在这个信息论框架中,违反 WEP 意味着人们可以提取有关自由落体物体质量的信息。WEP 的这种信息论表述具有以下优势:它可以以明确的方式扩展到量子物体。具体而言,Fisher 信息给出了可观测随机变量提供的有关未知参数的信息量。在我们的例子中,随机变量是粒子 x 的位置,未知参数是其质量 m 。对于具有波函数 ψ( x , t ) 的粒子,Fisher 信息为
摘要 - 本文提出了一个基于变压器的新型框架,旨在通过生成精确的特定于类的对象定位图作为伪标签来增强弱监督的语义细分(WSSS)。在观察到标准视觉变压器中的单级令牌区域的观察基础上可以促进类不足的定位图,我们探索了变压器模型通过学习多个类代币来捕获类别歧视对象定位的特定于类别歧视对象的特定歧视对象的潜力。我们引入了一个多级令牌变压器,该变压器结合了多个类令牌,以启用与贴片令牌的类感知相互作用。为了实现这一目标,我们设计了一种班级感知的培训策略,该策略在输出类令牌和地面实际类标签之间建立了一对一的对应关系。此外,提出了一个对比类别(CCT)模块来增强判别类令牌的学习,从而使模型能够更好地捕获每个类别的独特特征和特性。结果,可以通过利用与不同类代币相关的类键入浓度来有效地生成类歧视对象定位图。为了进一步完善这些定位图,我们提出了从斑块到斑块变压器注意的斑块级成对亲和力的利用。此外,提出的框架无缝补充了类激活映射(CAM)方法,从而在Pascal VOC 2012和MS Coco 2014数据集中显着改善了WSSS性能。这些结果强调了类令牌对WSSS的重要性。代码和模型在此处公开可用。
石墨烯,排列在平坦的蜂窝晶状体中的碳原子具有许多有趣的电子特性[1,9]。在实现实验室中大型石墨烯晶体的实现后[10]的兴趣,理论和实验性是强烈的。主要特征之一是物理学家所说的电子在石墨烯中的“相对论行为”,石墨烯中的电子可以看作是生活在2 d空间中的无质量费米子,其动力学由weyl hamiltonian产生,即零毛汉氏菌,零含量为零。我们在这里提出了石墨烯的标准分析,该标准分析显示了Weyl纤维,这是对石墨烯的离散处理,可追溯到[13](即使不是更早)。我们已经有一段时间对经受垂直均匀磁场的石墨烯片的电子特性感兴趣。我们通过将哈密顿的积分内核乘以单型相因子来对这种情况进行建模,该技术被称为“ PEIERLS替代” [6,7,11]。
爱尔兰都柏林技术大学电气和电子工程学院的光子研究中心。B Tyndall国家研究所,大学科克大学科克,李·麦芽(Lee Maltings),戴克游行,爱尔兰科克。c数学,物理和电气工程系,诺森比亚大学,纽卡斯尔,泰恩NE1 8日,英国。* d19125415@mytudublin.ie
[7] O. Vinyals、I. Babuschkin、W. M. Czarnecki 等人。, “使用多智能体强化学习在星际争霸 II 中达到大师级水平”,《自然》,
摘要:光的自旋霍尔效应是一种通过光接口处的横向和旋转依赖性分裂形成的现象,对于从界面和依据的精确定量数据而言是一种吸引人的选择,是提高精度元学的一种吸引人的选择。这种高度的精度归因于弱测量的原理。自从其概念引入以来,通过弱测量技术从经验上观察到了光的旋转效果,并紧密地遵循了最初提出的实验配置。最近,有人建议将设置缩小尺寸,而精确度损害了。在这里,通过观察反映和
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
