本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
HiFocus™ SlimJ 电极......................................................................................................................................................................................................29 HiFocus SlimJ 电极描述.................................................................................................................................................................................... 29 HiFocus SlimJ 电极规格....................................................................................................................................................................................... 30 HiFocus SlimJ 电极设备要求....................................................................................................................................................................... 31 HiRes 超可重复使用手术工具包,CI-4509............................................................................................................................................................. 31 HiFocus 电极钳,CI-4350............................................................................................................................................................................. 32 HiFocus Mid-Scala 耳蜗切开术测量仪,CI-4347............................................................................................................................................. 32 HiFocus Mid-Scala 爪工具,CI-4254............................................................................................................................................................. 33 HiFocus SlimJ 电极深度测量仪, CI-1605................................................................................................................................................ 33 HiFocus SlimJ 电极 – 插入耳蜗................................................................................................................................................................... 34 HiFocus SlimJ 电极插入 - 使用镊子的徒手技术...................................................................................................................................... 35 成像...................................................................................................................................................................................................... 37 重新插入 HiFocus SlimJ 电极.................................................................................................................................................................... 37 包扎耳蜗造口术.................................................................................................................................................................................... 37 盘绕电极导线............................................................................................................................................................................................................................................ 38
纠缠态(例如 Bell 态和 GHZ 态)是使用已知满足杨-巴克斯特方程及其推广的矩阵从可分离态生成的。这一非凡事实暗示了使用编织算子作为量子纠缠器的可能性,并且是拓扑和量子纠缠之间更大推测联系的一部分。我们通过展示超对称代数可用于构造谱参数相关的广义杨-巴克斯特方程的大量解来推动对这种联系的分析。我们提供了许多明确的例子,并概述了任意数量量子比特的通用算法。我们获得的算子依次产生多量子比特系统中的所有纠缠态,该系统由量子信息论中引入的随机局部操作和经典通信协议分类。
Supermicro B13DET 支持双第四代 Intel® Xeon® 可扩展处理器(插槽 E1 LGA 4677-1),具有三个 UPI(最高 16GT/s)和高达 350W 的 TDP(热设计功率)。B13DET 采用 Intel C741 芯片组构建,支持 4TB(最高)3DS RDIMM/RDIMM DDR5 ECC 内存,在 16 个 DIMM 插槽中速度高达 4800MT/s(见下文注释 1)。该主板具有出色的 I/O 可扩展性和灵活性,包括两个支持 SATA 6G/NVMe 的 HDD 连接器、一个支持 PCIe 5.0 的 M.2 连接器、两个支持子转接卡的夹层插槽、一个支持 25GbE 以太网 LAN 的中板,以及一个来自 PCH 的用于支持 SATA 6.0 的附加 SATA 连接器。它还提供最先进的数据保护,支持硬件 RoT(信任根)和 TPM(可信平台模块)(下面的注释 2)。B13DET 针对具有高密度和高速输入/输出能力的 4U/8U SuperBlade 系统进行了优化。它是高性能计算 (HPC)、云计算、财务建模、企业应用程序、具有数据密度应用程序的科学和工程计算的理想选择。请注意,此主板仅供专业技术人员安装和维修。有关处理器/内存更新,请参阅我们的网站 http://www.supermicro.com/products/。
我们基于从 Gutzwiller 平均场假设得出的作用的正则量化,开发了 Bose-Hubbard 模型的量子多体理论。我们的理论是对弱相互作用气体 Bogoliubov 理论的系统推广。该理论的控制参数定义为 Gutzwiller 平均场状态之上的零点涨落,在所有范围内都保持很小。该方法在整个相图中提供了准确的结果,从弱相互作用超流体到强相互作用超流体,再到 Mott 绝缘相。作为具体应用示例,我们研究了两点相关函数、超流体刚度、密度涨落,发现它们与可用的量子蒙特卡罗数据具有定量一致性。特别是,恢复了整数和非整数填充时超流体-绝缘体量子相变的两个不同普适性类。
摘要。文章分析了当前媒体话语中新技术语言形象的重构,其中神经网络和人工智能(AI)的讨论已成为主流趋势。作者在“人工智能”专题组中首次运用复杂话语、语料库方法和内容分析来构建语义场和微场。根据获得的数据,媒体呈现的AI主题领域的节点是“技术”、“智力活动的算法”、“当前系统”和“与人类竞争的演员”集群。搭配分析使得确定人工智能在社会、经济、科学、技术和创意领域的概念化成为可能。强调了智能与理性(人工与机器)之间的显着对立。所分析的人工智能以三种形式出现:强人工智能、弱人工智能、个人人工智能。强人工智能占上风,提名中的主题占据主导地位就证明了这一点。在媒体话语中,机器被拟人化,被赋予了理性、意识和潜意识、记忆、情感,成为一个能够做出决策并创造新的智力价值的世界大脑,这通过兼容性和语境同义词来证明。在对“人工智能”、“科技”、“风险”主题组交叉点的分析中,作者看到了进一步的研究前景。
散斑是一种干涉现象,由相干照明从物体平面的光学粗糙表面散射而产生。传播到光瞳平面后,背向散射的光线自干涉形成亮斑和暗斑,这些斑块被称为“散斑”。假设照明为准单色,且表面高度变化超过光波长的一半,则散斑图案将“完全显现”,对比度趋于一致。在非合作定向能应用中,散斑充当乘性噪声,对图像质量[2]和轨迹质量[3]产生有害影响。给定一个扩展信标,自适应光学系统必须分别感测和校正大气引起的相位像差(导致闪烁)和物体引起的相位像差(导致散斑)。然而,波前传感器(在自适应光学系统内)实际测量和重建的是来自两个相位像差源的路径积分贡献的总和。例如,夏克-哈特曼波前传感器 (SHWFS) 使用单独的小透镜将接收器孔径划分为子孔径,这些子孔径对入射波前进行采样,并将样本聚焦到探测器阵列上。
由于随机噪声的正则化作用,提出了对平均值相互作用粒子系统的定量熵类型传播。与现有结果相对熵的混乱传播的现有结果不同,我们取代了相互作用粒子的初始分布与限制McKean -Vlasov SDES的有限相对熵,而有限的L 2 -Wasserstein距离 - 在某种意义上削弱了初始条件。Furthermore, a general result on the long time entropy-cost type propagation of chaos is provided and is applied in several degenerate models, including path dependent as well as kinetic mean field interacting particle system with dissipative coeffcients, where the log-Sobolev inequality for the the distribution of the solution to the limit McKean-Vlasov SDEs does not hold.
增强现实(AR)技术为人类机器人互动提供了一种令人兴奋的新媒介,为隐式和明确的人类机器人沟通带来了新的机会。例如,这些技术使身体受限的机器人能够执行非语言相互作用模式,例如Deictic手势,缺乏这样做所需的物理形态。但是,大量的HRI研究表明了物理体现的真正好处(与屏幕上的虚拟机器人相比),暗示虚拟机器人零件的AR增强可能面临挑战。在这项工作中,我们提供了经验证据,比较了使用虚拟(AR)和物理臂来执行识别虚拟或物理引用者的神性手势。我们的主观和客观结果证明了混合现实的神性手势在克服这些潜在局限性方面的成功,无论手势和参考方之间的身体差异如何,它们的成功使用。这些结果有助于激发混合现实机器人系统的进一步部署,并为混合现实技术在HRI环境中的作用提供细微的洞察力。
