随着可拉伸器件的发展,在软基底上具有刚性薄膜的工程部件越来越多。我们提出分析在双轴压缩应力状态下软基底上薄膜的屈曲脱层。该问题已通过欧拉柱屈曲分析进行了研究。本文介绍了在软基底上进行的实验,结果表明在某些情况下,“墨西哥帽”形状更能近似地表示屈曲形状。使用通过内聚相互作用粘合到弹性介质的非线性板的模型来描述脱层过程。结果表明,“墨西哥帽”形状改变了软基底的裂纹扩展行为。由 AIP Publishing 出版。[ http://dx.doi.org/10.1063/1.4979614 ]
简单的摘要:海龟具有独特的免疫系统,在持续的寄宿生物武器竞赛中,它在数百万年内演变出来。由于该物种占据了独特的进化和环境利基市场,因此它们提供了一个机会,可以深入了解免疫的进化。我们介绍了乌龟免疫系统的概述,包括对协调病原体免疫反应重要的细胞和器官,重点是病原体识别和感染弹性介质,包括干扰素。我们重点介绍了未来研究的领域,并注意哪些研究研究了淡水海龟,并且缺乏海龟。我们特别关注绿海龟(Chelonia mydas),因为该物种中的少年海龟是肿瘤性肿瘤疾病,纤维蛋白酶(FP)最大的影响。
通过连续体(BICS)中的结合状态构建高度局部的波场,可促进增强的波浪互动,并为高灵敏设备提供方法。弹性波可以携带复杂的极化,因此与BIC形成中的电磁波和其他标量机械波的不同,尚未充分探索和利用。在这里,我们报告了对羔羊波导侧支支撑的局部共振模式的研究,该模式由两对共振支柱支撑,并显示了两组具有不同极化或对称性的弹性BIC的出现。,两组BIC对外部扰动表现出明显的反应,基于该反应,提出了具有增强敏感性的无标签感应方案。我们的研究揭示了弹性介质中复杂的波动力学引起的BIC的丰富特性,并证明了它们在传感和检测中的独特功能。
周期性结构包括重复单位细胞。从人造的多跨桥到天然存在的原子网格,到处都有周期性结构。Brillouin(1953)首先使用波传播方法来研究周期性晶格的动力学。周期性配置在半导体和晶体中创建电子带的能力类似于弹性介质的结构/声学带。加固的板和壳结构经常用于多种结构应用中,包括桥梁,船体,甲板,飞机和航空飞机火箭/导弹结构,这些结构是周期性结构的示例。Mead(1996)详细概述了有关周期结构振动分析的可用文献。在均质/异质复合结构,波导,音调晶体(PC),声学/弹性超材料,振动声学隔离,噪声抑制设备,振动控制,有向能量的振动等区域中,这可能会导致出色的实施。周期性结构还用于研究滤波器特征(Zheng等,2019)的可调节性,例如所需的声带隙,传播,截止频率,衰减和响应方向。健康监测(Groth等,2020)和对这些结构的损害检测需要很好地了解通过这种周期结构的弹性波的传播。尤其是对电磁波运动的影响(Pierre,2010年)已被广泛研究,并且已应用于许多光学和电磁设备(Bostrom,1983)。有限元(FE)基于理论的数值方法在对各种数值方法之间进行物理结构进行建模时表现出最多的多样性和有用性。使用FEM(PSFEM)的周期性结构中的波传播理论是研究主题的目标,数值解决方案基于结构单位单元的Fe分析。这种数值FE方法可以通过很少的计算工作来实现高精度,并且推荐的选择是预测一维和二维单一波导中的波动(Orris and Petyt,1974; Pany等,2002; Pany and Parthan and Parthan,2003a,2003a; Pany et and; Pany et al。大多数已发布的
背景:当今医学成像和计算资源的可用性为脑生物力学的高保真计算建模奠定了基础。脑及其环境的特点是组织、血液、脑脊液 (CSF) 和间质液 (ISF) 之间存在动态而复杂的相互作用。在这里,我们设计了一个用于颅内动力学建模和模拟的计算平台,并根据脑脉动的临床相关指标评估模型的有效性。方法:我们开发了人类脑环境中完全耦合的心脏诱发的脉动性脑脊液流和组织运动的有限元模型。三维模型几何形状源自磁共振图像 (MRI),具有高水平的细节,包括脑组织、脑室系统和颅蛛网膜下腔 (SAS)。我们将器官尺度的脑实质建模为一种由细胞外液网络渗透的弹性介质,并将 SAS 和脑室中的脑脊液流动描述为粘性流体运动。分布在脑实质中的脉动净血流代表心动周期中的血管扩张,是运动的驱动因素。此外,我们还研究了模型变化对一组临床相关感兴趣量的影响。结果:我们的模型预测了脑脊液填充空间和多孔弹性实质在 ICP、脑脊液流量和实质位移方面的复杂相互作用。ICP 的变化主要由其时间幅度决定,但脑脊液填充空间和实质的空间变化都很小。受 ICP 差异的影响,我们发现脑室和颅脊脑脊液流量较大,颅 SAS 中有一些流量,脑实质中存在小的脉动 ISF 速度。此外,该模型预测在心动周期开始时,实质组织在背部方向会呈漏斗状变形。结论:我们的模型准确描述了颅内压、脑脊液流动和脑组织运动之间的复杂相互作用,与临床观察结果相符。它为详细研究生理和病理生理条件下颅内耦合动力学和相互作用提供了一个定性和定量平台。
弹性体仍然是一种流行的方法,2,4 人们对由彼此隔离或连接以形成导电通路的 LM 液滴悬浮液组成的材料系统的兴趣日益浓厚。9,10 近年来,后者的努力与基于 LM 的纳米技术 11 的实践相结合,从而开辟了液态金属纳米复合材料研究的新领域。LM 纳米复合材料代表了这样的材料系统:其中 LM 合金(如 EGaIn 或 Galinstan)要么作为纳米级液滴悬浮在液态金属聚合物基质中,要么与金属纳米颗粒混合以形成双相组合物,其中 LM 充当连续基质相。无论哪种情况,LM 纳米复合材料都代表了我们如何定制液态金属材料的电学、介电和热学性能的潜在范例。历史上,改变固体材料此类特性的努力通常集中在填充有刚性金属、陶瓷纳米粒子或碳同素异形体的粒子复合材料上。然而,此类填充材料会导致刚度和机械滞后增加,尤其是在渗透和电导率所需的高浓度下。虽然对于某些应用来说是可以接受的,但对于需要与固体材料和生物组织相匹配的机械柔顺性的计算、机器人和医学等新兴技术来说,这种权衡极大地限制了它们。在这方面,用 LM 纳米液滴代替刚性填料可以显著拓宽纳米复合材料的应用范围。在这里,我们回顾了合成 LM 纳米复合材料的方法的最新进展及其在固体物质传感、驱动和能量收集方面的应用。我们首先总结了合成纳米级 LM 液滴(可在溶剂中形成稳定悬浮液)的技术背景和方法进展。接下来,我们介绍 LM-聚合物纳米复合材料的最新进展,这种复合材料由嵌入在软弹性介质中的 LM 纳米液滴组成。最后,我们讨论了在创建刚性金属纳米颗粒嵌入块体中的材料系统方面所做的平行努力
背景。缺血再灌注损伤(IRI)是诊所肠道损害的主要原因。尽管间充质基质细胞(MSC)或白介素37(IL-37)表现出一些有益的作用以改善IRI,但它们的影响受到限制。在这项研究中,研究了IL-37基因模型MSC(IL-37-MSC)对肠IRI的预防作用。方法。肠道IRI模型是通过闭塞上肠系膜动脉30分钟而建立的,然后在大鼠中排出72小时。将四十个成年雄性Sprague-Dawley大鼠随机分为假对照,IL-37-MSC处理,经MSC处理,重组IL-37-(RIL-37-)和未经处理的组。通过H&E染色评估肠道损伤。使用ELISA测定了肠道屏障功能因子(二氨酸氧化酶和D-乳酸)和炎症细胞因子IL-1β的水平。通过Western印迹检测到组织损伤相关的NLRP3炎症和下游级联反应,包括裂解的caspase-1,IL-1β和IL-18。通过qPCR确定了在IL-1β和IL-18的下游的促进弹性介质IL-6和TNF-α的mRNA水平。在正态性测试后通过单向方差分析(ANOVA)分析数据,然后进行事后分析,并以最小的差异(LSD)测试进行分析。结果。IL-37-MSC能够迁移到受损的组织并显着抑制肠IRI。 结论。 结果表明IL-37基因修饰显着增强了MSC对肠IRI的保护作用。IL-37-MSC能够迁移到受损的组织并显着抑制肠IRI。结论。结果表明IL-37基因修饰显着增强了MSC对肠IRI的保护作用。与MSC或RIL-37单药治疗组相比,IL-37-MSC治疗均改善了肠道屏障功能,并降低了IRI大鼠的局部和全身性炎症细胞因子IL-1β水平。此外,在用IL-37-MSC处理的IRI大鼠中,与组织损伤相关的NLRP3和下游靶标(切割的caspase-1,IL-1β和IL-18)显着降低。此外,在用IL-37-MSC处理的IRI大鼠中,IL-1β-和IL-18相关的促进型介体IL-6和TNF-αmRNA表达式均显着降低。此外,与NLRP3相关的信号通路可能与IL-37-MSC介导的保护有关。
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪声的相位反转 180 度并将此反转信号添加到原始噪声中来降低背景噪声的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪音的相位反转 180 度并将此反转信号添加到原始噪音中来降低背景噪音的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]
由于其出色的电子性能(例如其高电导率和机械强度),对石墨烯的研究引起了巨大的兴趣,这使其成为纳米技术和量子设备中一系列应用的有希望的材料[1-3]。这些特性源于其独特的蜂窝晶格结构,在某些条件下,该结构可以在低能量下表现出无质量的狄拉克费米子。因此,石墨烯片将注意力吸引为可以以实用方式研究场理论的材料。在1992年,Katanaev和Volovich [4]建立了固体缺陷的几何理论,将弹性介质中的扭转和曲率与晶格中的拓扑缺陷有关。这项工作奠定了理解如何将脱节视为几何奇异性的基础,在石墨烯的背景下,可以使用弯曲空间中的Dirac方程进行建模。使用这些几何框架研究了对石墨烯电子特性的产生影响[4]。因此,缺陷的几何理论使石墨烯成为凝结物理学中极好的类似引力模型。自从发现石墨烯以来,各种研究都集中在理解拓扑缺陷(例如脱节)的存在如何影响其电子特性。脱节是由于材料中的局部曲率引入局部曲率而导致的拓扑缺陷,这是由于插入或去除角扇区而引起的[5]。在2008年,一项研究使用了几何方法来分析石墨锥中的脱节的影响。 最近,Fernandez等。在2008年,一项研究使用了几何方法来分析石墨锥中的脱节的影响。最近,Fernandez等。在石墨烯中,这些缺陷通常与五角大楼或七叶大环的形成相关,从而导致晶格对称性变化并影响准粒子的散射[6,7]。这些拓扑缺陷可以将平坦的石墨烯片转换为弯曲的结构,例如石墨锥[8-10],富勒烯[11,12],石墨烯虫洞[13-15]等。随后的研究,例如在脱节存在下对石墨烯低能电子光谱的工作,探索了外部磁场的影响。使用连续方法,证明脱节是明确的,其能量谱明确地根据披露参数和磁场[16]明确地修改了Landau水平。这项研究表明,一个描述了在费米水平附近的低能状态的纺纱器在圆锥体的顶端运输时获得了一个相。此结果直接是由于拓扑缺陷,并且相采集类似于Aharonov-Bohm效应。该研究将分析扩展到具有多个锥体的系统,提供了对石墨烯中的脱节方式如何导致非平凡的几何阶段的全面描述,并影响材料的电子特性[8]。[17]已经使用缺陷的几何理论研究了石墨烯的电子特性。使用[18]中的几何理论研究了具有披露的石墨烯片片中的全体量子计算。我们中的一个[19]研究了石墨烯中的几何阶段,披露将Kaluza-Klein理论增强了,以描述具有缺陷的弹性培养基。