训练分割网络需要大量带注释的数据集,而这在医学成像中很难获得。尽管如此,我们认为数据增强尚未在脑肿瘤分割中得到充分探索。在本项目中,我们在训练标准 3D U-Net 时应用了不同类型的数据增强(翻转、旋转、缩放、亮度调整、弹性变形),并证明增强在许多情况下可显著提高网络性能。我们的结论是亮度增强和弹性变形效果最好,与仅使用一种增强技术相比,不同增强技术的组合并不能带来进一步的改进。我们的代码可在 https://github.com/mdciri/3D-augmentation-techniques 获得。
摘要 - 在本文中,我们提出了一种使用机器人臂控制弹性可变形物体形状的一般统一跟踪方法。我们的方法是通过在对象周围形成晶格,将对象与晶格结合,并跟踪和宣誓晶格而不是对象的宣誓。这使我们的方法完全控制了3D空间中任何一般形式的弹性变形对象的变形(线性,薄,体积)。此外,它将方法的运行时复杂性与对象的几何复杂性相分解。我们的方法基于可行的(ARAP)变形模型。它不需要已知对象的机械参数,并且可以通过大变形将对象驱动到所需的形状。我们方法的输入是对象表面的静止形状的点云,并且在每个帧中由3D摄像头捕获的点云。总的来说,我们的方法比现有方法更广泛地适用。我们通过多种形状和材料(纸,橡胶,塑料,泡沫)的弹性变形物体进行了许多实验来验证方法的效率。实验视频可在项目网站:https://网站上找到。Google。com/view/tracking-servoing-apphack。
伺服液压试验机的典型应用包括低周疲劳试验。在低周疲劳试验期间,材料在特定(通常升高)温度下循环加载,直到发生轻微塑性变形。在这种类型的负载下,样品(材料)仅承受几千次负载变化。在此过程中,对试验机和机器控制器的要求特别高。在从弹性变形到塑性变形的过渡中,样品的刚度发生剧烈变化,控制器必须非常快速地做出反应,例如保证恒定的应变增加率。在这里,试验机的非常高的刚度起着至关重要的作用。
杜邦™ Vespel ® 聚酰亚胺能够适应错位,因为它能够在压缩时弹性变形并更均匀地重新分配负载 [4]。图 2 [5,6] 描绘了杜邦™ Vespel ® 花键在 0.34 度错位时的磨损数据,这是图 1 中包含的最坏情况。这种在高度错位下运行的能力可延长磨损寿命。在某些应用中,与由杜邦™ Vespel ® 聚酰亚胺制成的适配器连接的花键的磨损寿命是润滑金属对金属花键连接的 50 倍 [2,5]。具有冠状几何形状的圆形杜邦™ Vespel ® 花键联轴器具有额外的好处,即在轴错位时减少驱动和从动机械轴承上的应力 [4]。
折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
摘要:带有扭矩电动机的现代直接驱动和高速旋转台非常适合所有处理和组装应用,这些应用需要最短的索引时间和浮动的定位。以下论文致力于研究,设计和优化由气动能量引起的创新桌夹紧系统(用于精确定位的制动器),以6 bar的最大夹紧压力工作。上述应用的挑战与开发能够在数千nm范围内提供最大切向扭矩(夹紧螺母)的解决方案有关,而无需利用高压液压能的使用。提出的解决方案的优化是基于应力的精确计算,以进行疲劳评估和夹具的弹性变形,以便设置交配部分之间的正确公差。最终,为了调整数值模型而进行了实验活动,然后将其用于验证提出的设计解决方案。
摘要:在这项研究中,由压电堆栈供电的合规放大器旨在满足高性能分配操作要求。通过研究传统的桥梁型放大器机制的低频带宽问题,我们提出了一种位移放大器机制,混合桥梁 - 桥桥(HBLB),从而通过结合传统的桥梁型和杠杆机制来增强其动态性能。添加引导梁,以进一步提高其输出刚度,并保证了较大的放大比。已经开发出一种分析模型来描述HBLB机制的完整弹性变形行为,该机制考虑了输入末端的横向位移损失,然后通过有限元分析(FEA)进行验证。结果表明,HBLB的工作原理使用有限元方法优化了结构参数。最后,为性能测试制造了位移放大器的原型。静态和动态测试结果表明,所提出的机制可以达到223.2 µm的行进范围,并且频率带宽为1.184 kHz,它符合高性能压电射击器的要求。
本文讨论了设计可物理变形以适应不断变化的需求的建筑表皮的问题。为了实现这一建筑愿景,设计师专注于开发用于驱动和动能转换的机械接头、组件和系统。然而,使用轻质弹性变形材料的未开发方法为设计具有更少机械操作的响应式建筑表皮和骨架提供了机会。这项研究旨在开发可用作现有建筑的第二层表皮或遮阳板的弹性模块化系统。使用第二层表皮有可能使现有建筑在各种气候条件下表现更好,并提供视觉上引人注目的表皮。通过三个原型设计实验对这种方法进行了评估,即帐篷、窗帘和百叶窗,以实现两个基本目的:舒适和沟通。这些实验原型探索了使用嵌入在变形材料中的数字和物理计算来设计可操纵阳光并充当响应式遮阳装置的建筑变形表皮。
本文讨论了设计可物理变形以适应不断变化的需求的建筑表皮的问题。为了实现这一建筑愿景,设计师专注于开发用于驱动和动能转换的机械接头、组件和系统。然而,使用轻质弹性变形材料的未开发方法为设计具有更少机械操作的响应式建筑表皮和骨架提供了机会。这项研究旨在开发可用作现有建筑的第二层表皮或遮阳板的弹性模块化系统。使用第二层表皮有可能使现有建筑在各种气候条件下表现更好,并提供视觉上引人注目的表皮。通过三个原型设计实验对这种方法进行了评估,即帐篷、窗帘和百叶窗,以实现两个基本目的:舒适和沟通。这些实验原型探索了使用嵌入在变形材料中的数字和物理计算来设计可操纵阳光并充当响应式遮阳装置的建筑变形表皮。