航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
摘要 声学中的概念和形式主义通常用于举例说明量子力学。相反,正如 Gabor 研究表明的那样,量子力学可用于实现对声学的新视角。在这里,我们特别关注人类声音的研究,将其视为研究声音世界的探针。我们提出了一个基于发声可观测量的理论框架,以及一些可用于分析和合成的测量设备。类似于粒子自旋态的描述,量子力学形式主义用于描述与语音标签(如发声、湍流和声门上肌弹性振动)相关的基本状态之间的关系。这些状态的混合及其时间演变仍然可以在 Fourier/Gabor 平面中解释,并且可以实现有效的提取器。本文介绍了声音量子声音理论的基础,以及对声音分析和设计的影响。
人类通过声音模仿具有特权,具有体现的方式来探索声音的世界。声音的量子声理论(QVT)始于以下假设:任何声音都可以表达并被描述为声带叠加的演变,即发声,湍流和上声音肌弹性振动。量子力学的假设,具有可观察的,测量和状态的时间演变的概念,提供了一个模型,可用于分析和合成方向,可用于声音处理。QVT可以对某些听觉流现象给出量子理论的解释,最终导致了相关声音处理问题的实际解决方案,或者可以创造性地利用它来操纵声音元素的叠加。也许更重要的是,QVT可能是在物理学家,计算机科学家,音乐家和声音设计师之间进行对话的肥沃理由,这可能使我们闻所未闻的人类创造力表现出来。