摘要。在有丝分裂纺锤体中,微管在中期通过捕获键附着在动粒上,微管解聚力引起随机染色体振荡。我们研究了纺锤体模型中的协同随机微管动力学,该模型由一组平行微管组成,这些微管通过弹性接头附着在动粒上。我们包括微管的动态不稳定性以及弹性接头对微管和动粒的作用力。采用基于福克-普朗克方程的平均场方法,对外力作用于动粒的单侧模型进行分析求解。该解建立了微管集合的双稳态力-速度关系,与随机模拟一致。我们推导出双稳态的接头刚度和微管数的约束。单侧纺锤体模型的双稳态力-速度关系导致双侧模型中的振荡,这可以解释中期随机染色体振荡(方向不稳定性)。我们推导出中期染色体振荡的连接体刚度和微管数的约束。将极向微管通量纳入模型,我们可以解释实验观察到的极向通量速度高的细胞中染色体振荡的抑制。然而,在存在极向喷射力的情况下,染色体振荡持续存在,但幅度减小,姊妹动粒之间有相移。此外,极向喷射力是必要的,以使染色体在纺锤体赤道处对齐,并稳定两个动粒的交替振荡模式。最后,我们修改了模型,使得微管只能对动粒施加拉力,从而导致两个微管集合之间发生拉锯战。然后,到达动粒后诱发的微管灾难是刺激振荡的必要条件。该模型可以定量再现 PtK1 细胞中动粒振荡的实验结果。
摘要:这项工作介绍了康复 - exos的设计,这是一种新颖的上肢外骨骼,用于康复目的。它配备了高还原比率执行器和紧凑的弹性接头,以获得基于应变测量值的扭矩传感器。在这项研究中,我们解决了扭矩传感器的性能以及可能导致不必要的非轴向矩负载串扰的设计方面。此外,通过对多DOF,非线性系统动力学进行建模并为非线性效应(例如摩擦和重力)提供补偿,设计了新的全州反馈扭矩控制器。通过控制系统的表现和机械结构验证评估所提出的上肢外骨骼,将全州反馈控制器与两个透明度测试中的其他两个基准状态反馈控制器进行了比较 - TEN受试者,两个参考速度,以及一个happeric的渲染评估。两个实验都代表了设备的预期目的,即与受到有限运动技能影响的患者的身体互动。在所有实验条件下,我们提议的关节扭矩控制器都达到了更高的性能,为关节提供了透明度,并主张外骨骼对辅助应用的可行性。