我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。
BF、BF 2 、BF 3 和正离子种类如B + 、BF + 、BF + 2 、BF + 3 。此类碰撞过程还控制等离子体的稳定性和放电平衡。等离子体中产生的种类和自由电子会引起各种碰撞过程,了解这些碰撞过程对于模拟 BF 3 等离子体非常重要。因此,等离子体中所有离子和中性粒子的可靠电子碰撞截面是准确进行等离子体放电模拟的重要数据。碰撞截面数据是等离子体模拟的重要输入,此类模拟的准确性与输入数据的可靠性直接相关。在 (3 ∼ 100 eV) 范围内的碰撞截面数据对于低温等离子体 (3 ∼ 5 eV) 很重要,其中电子的能量可分布高达 100 eV。弹性散射是大多数等离子体放电中的主要过程,因为与其他反应相比,该过程的碰撞截面较大;弹性散射有助于使电子热化。另一方面,对于电子激发过程,电子激发阈值低于电离阈值,因此当电子温度较低时,该反应可能很重要。在实验中,散射和激发截面可用于分析电子加热机制 [5, 6]。即使在这种情况下,也需要至少 25 eV 的数据,但最高可达 100 eV。此外,由于这些自由基难以制备、反应性强且具有强腐蚀性,因此对 BF 和 BF 2 等自由基的实验研究既困难又罕见;因此目前没有可用的实验数据。理论计算在提供全面能量范围内的数据方面的重要性已得到充分证实 [7]。电子与中性 BF 3 分子的碰撞研究在理论和实验上都得到了相当大的关注 [4, 8–17]。文献中也有一些关于正 BF x 离子的各种碰撞过程的电子碰撞研究 [1, 18, 19]。然而,还没有对自由基 BF 和 BF 2 中的电子诱导碰撞过程进行系统研究,而这种碰撞过程在任何含 BF 3 的等离子体中都起着重要作用。我们最近使用 R 矩阵方法对 BF 3 分子的电子散射截面进行了研究[17],结果表明其与实验数据高度一致,这促使我们对 BF 和 BF 2 进行类似的计算。这是本研究的主要动机之一。文献中唯一可用的研究是 Kim 等人[10]的工作,他们使用二元相遇 Bethe (BEB) [20] 方法提供了 BF 和 BF 2 的电离截面。因此,在本研究中,我们提供了 BF 和 BF 2 的一组重要截面,如弹性、激发、微分截面(DCS)和动量转移截面(MTCS)以及总电离截面,并与 BEB 数据进行比较 [10]。使用 R 矩阵和球面复光学势 (SCOP) 方法,采用完整活性空间配置 (CAS-CI) 和静态交换 (SE) 模型进行计算。CAS-CI 计算随着目标状态数量的增加而进行,直到获得收敛结果。我们使用两种理论方法在不同的能量范围内进行计算。在低能区(<10eV),从头算 R 矩阵方法可以很好地表示电子-分子
在宇宙的所有天体物理和宇宙学尺度上都可以找到非重子暗物质存在的证据。根据对宇宙微波背景辐射的观测,暗物质对宇宙总能量的贡献估计为 27%。解决暗物质之谜的一类通用粒子被称为弱相互作用大质量粒子 (WIMP),其质量在 GeV-TeV 范围内,与普通物质的预期相互作用率为弱尺度相互作用量级。EDELWEISS-III 实验的目的是利用锗辐射热计探测银河系暗物质晕中 WIMP 的弹性散射。在 ≈ 18 mK 的低温下,WIMP 引起的核反冲产生的预期 O (keV) 能量沉积会产生可测量的热量和电离信号。这种直接检测实验的主要挑战是 WIMP-核子散射的预期速率较低,最新结果限制了该速率低于每 100 千克每年几次。因此,多层外部屏蔽可保护实验免受环境放射性的影响。通过使用基于反冲类型的粒子识别,可以排除来自屏蔽内元素放射性的其余背景。最成问题的背景来自中子,它引起的核反冲与探测器中的 WIMP 信号无法区分。具体来说,中子是由宇宙射线μ子及其簇射产生的。因此,实验位于莫达内地下实验室,那里 4800 米的岩石使宇宙μ子通量衰减 10 6 倍,降至 5 µ /m 2 /天。其余的μ子使用围绕实验的主动µ否决系统进行标记,该系统由 46 个塑料闪烁体模块组成。
如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准
在计算成像中,对象的定量物理特性是根据缩写范围的光学测量值估算的。导致散射的复杂光 - 物质相互作用受麦克斯韦方程的控制,或者在某些假设下,标量helmholtz方程式从与波长相比的物体中删除光弹性散射[1]。为了简化建模光学散射和估计对象性能的过程,已经进行了许多关于近似于标量Helmholtz方程的解决方案的研究。最原始的是投影近似,其中假定散射的场维持入射波前,例如平面或球形波,而attenua则和相位延迟会累积与穿过对象的射线的光路长度成比例的。当入射波前是平面或球形时,该假设会导致ra换变换公式,并且是计算机断层扫描的基础。当涉及到具有不可忽略的折射的相对较薄的对象时,所谓的单个散射近似(包括第一个出生和rytov方法)提供了更合适的描述[2]。随着对象变得密集且高度散射,正如预期的那样,即使是单个散射方法也开始失败,并且需要计算多个散射的模型。代表性的方法是Lippmann-Schinginger方程(LSE)[3-5],多切片方法[6-9]和梁传播方法(BPM)[10-13]和BORN SERIST [14,15]。多层和梁传播方法非常紧密地相关,重要的区别是前者是由求解的schrödinger方程激励的,而后者则是用于Helmholtz方程。可以从标量Helmholtz方程开始制定多个散射模型,但它们依赖于差异