本手册中包含的信息旨在帮助您使用 Rogers 的弹性材料解决方案进行设计。它不旨在也不会产生任何明示或暗示的保证,包括对适销性或特定用途适用性的任何保证,或用户将为特定目的实现本手册中显示的结果。用户应确定 Rogers 的弹性材料解决方案是否适用于每种应用。Rogers、BISCO、DeWAL、PORON、PORON EVExtend 和 ProCell 徽标、AquaPro、BISCO、DeWAL、PORON、PORON EVExtend 和 ProCell 是 Rogers Corporation 或其子公司之一的商标。© 2023 & 2024 Rogers Corporation。保留所有权利。印刷于美国 0624-0.75,出版号 #180-392
摘要:碳纳米管 (CNT) 的优异性能在引入橡胶基质时也呈现出一些局限性,特别是当这些纳米颗粒应用于高性能轮胎胎面胶料时。由于范德华相互作用,它们倾向于聚集成束,CNT 对硫化过程的强烈影响以及填料-橡胶相互作用的吸附性质加剧了橡胶-CNT 化合物的能量耗散现象。因此,它们在滚动阻力方面的预期性能受到限制。为了克服这三个重要问题,CNT 已用含氧基团和硫磺进行表面改性,从而改善了这些橡胶化合物在轮胎胎面应用中的关键性能。通过结合机械、平衡膨胀和低场核磁共振实验,对这些使用功能化 CNT 作为填料的新材料进行了深入表征。该研究的结果表明,通过在CNT表面引入硫,在橡胶基质和纳米颗粒之间形成共价键,对橡胶化合物的粘弹行为和网络结构产生积极的影响,降低了60◦C时的损耗因子(滚动阻力)和非弹性缺陷,同时增加了新化合物的交联密度。
本材料选择指南中包含的信息旨在帮助您使用 Rogers 的弹性材料解决方案进行设计。它不旨在也不会产生任何明示或暗示的保证,包括对适销性或特定用途适用性的任何保证,或用户将为特定目的实现本材料选择指南中显示的结果。用户应确定 Rogers 的弹性材料解决方案是否适合每种应用。Rogers、PORON、BISCO、ARLON 和 DEWAL 徽标以及 DEWAL 是 Rogers Corporation 或其子公司之一的商标。© 2023、2024 Rogers Corporation。保留所有权利。美国印刷 0324-PDF,出版物编号 175-214
1):业务线绩效中间体(C4),因为仅剩余的前部绩效材料的BL将包括在“技术与基础设施”的细分市场中,直到撤资2):涂料,粘合剂,密封剂和弹性材料
Q.3 在两个相互垂直的平面上,在弹性材料中的特定点施加 160 N/mm 2(拉伸)和 120 N/mm 2(压缩)的直接应力。材料中的主应力限制为 200 N/mm 2(拉伸)。计算给定平面上该点的允许剪应力值。还要确定该点的另一个主应力值和最大剪应力值。使用莫尔圆验证您的答案。
本申请说明中包含的信息旨在帮助您使用Rogers的弹性材料解决方案设计。它不是故意的,也不构成任何明示或暗示的保证,包括针对特定目的的适销性或适合性的任何保证,或者本申请说明中显示的结果将由用户用于特定目的。用户应确定Rogers Dewal材料对每种应用的适用性。Rogers徽标,Dewal和Dewal徽标是Rogers Corporation或其子公司之一的商标。©2024 Rogers Corporation。保留所有权利。0524 PDF•出版#175-212
为了推动软体机器人领域的发展,统一的材料本构模型和实验特性数据库至关重要。这将有助于使用有限元分析 (FEA) 来模拟其行为并优化软体机器人的设计。根据 ASTM D412 标准,对 17 种弹性体的样品进行了单轴拉伸试验,这些样品包括 Body Double™SILK、Dragon Skin™10 MEDIUM、Dragon Skin™20、Dragon Skin™30、Dragon Skin™FX-Pro、Dragon Skin™FX-Pro + Slacker、Ecoflex™00- 10、Ecoflex™00-30、Ecoflex™00-50、Rebound™25、Mold Star™16 FAST、Mold Star™20T、SORTA-Clear™40、RTV615、PlatSil ® Gel-10、Psycho Paint ® 和 SOLOPLAST 150318。详细描述了样品制备和拉伸试验参数。拉伸试验数据用于使用非线性最小二乘法推导超弹性材料模型的参数,并将其提供给读者。本文介绍了多种市售超弹性材料的机械特性和由此产生的材料特性,其中许多材料在软体机器人领域得到认可并广泛应用,还有一些材料从未被表征过。实验原始数据和用于确定材料参数的算法在软体机器人材料数据库 GitHub 存储库上共享,以实现可访问性,以及软体机器人社区的未来贡献。所展示的数据库旨在帮助软体机器人专家设计和建模软体机器人,同时为未来与软体机器人研究相关的材料特性提供一个起点。
2.8.汽车应用 在汽车行业,胡克定律的原理应用于悬架和减震器的设计。预测弹簧在负载下如何压缩和伸展的能力对于车辆性能和安全性至关重要。例如,悬架系统的调整涉及调整各种部件的弹簧常数以实现所需的乘坐质量和操控特性 [7]。2.9.生物医学设备 此外,在生物医学领域,胡克定律适用于假肢和矫形器的设计。了解材料在人体施加的力量下的表现,可以创造出既实用又舒适的设备。研究表明,加入符合胡克原理的弹性材料可以提高这些设备的性能,改善患者的治疗效果 [8]。