但是,仍然缺少几种解决方案。其中有提到有效的杂草管理,低能消耗量除草技术的发展以及使用新的土壤添加剂来改善土壤营养。其他被发现的差距包括管理增加干旱时期的策略,通过传感器监测土壤健康以及精确的农业工具,例如无人机和遥感。还呼吁通过收集雨水和再生农业技术来改善用水量。总体而言,参与者强调需要进一步的创新和支持,以克服农业气候变化所带来的挑战。
摘要:人工智能 (AI) 和大数据分析 (BDA) 有可能显著提高供应链的弹性并更有效地管理供应链资源。尽管人工智能和 BDA 在供应链背景下具有如此潜在的好处,并且越来越受欢迎,但迄今为止的研究分散在主要基于出版渠道的研究流中。我们通过对 2011 年至 2021 年期间在特许商学院协会 (CABS) 排名期刊上发表的供应链弹性方面的人工智能和 BDA 研究进行系统文献综述,整理和综合这些分散的知识。搜索策略产生了 522 项研究,其中 23 项被确定为与本研究相关的主要论文。研究结果通过以下方式推进了知识的进步:(i) 评估供应链文献中 AI 和 BDA 的现状,(ii) 确定据报道 AI 和 BDA 可以改善的供应链弹性阶段(准备、响应、恢复、适应性),以及 (iii) 在供应链弹性的背景下综合 AI 和 BDA 的报告优势。
不鼓励他在空闲时间学习,甚至在工作清闲时也不鼓励他学习。借助镇上博学之士借给他的书籍,鲍迪奇自学了代数和微积分,以及几门语言,以便学习外国书籍。为了学习物理,他首先自学了拉丁语,以便能够阅读艾萨克·牛顿的《自然哲学的数学原理》。他甚至发现了文中有一处错误,但直到许多年后才有信心指出这个错误。十几岁时,鲍迪奇学习了航海和测量,并被招募去协助对镇进行调查。18 岁时,两位当地牧师说服哲学图书馆公司允许他使用其书籍。21 岁时,当他的学徒期结束时,鲍迪奇被公认为该国最杰出的数学家之一。1
英国在经济和物理上取决于在其他地方开采的许多材料,以及此处未制成的特定技术组成部分。最近的供应链危机引起了人们对对“关键”材料不断增长的需求的日益关注,因为对这些材料的预计需求可能会超过可用的供应。这给英国的韧性带来了风险;如果物质需求大大超过供应,它不仅会干扰经济繁荣,而且会干扰英国实现达到零净建立基础设施转型的能力。对关键材料的需求的扩展也伴随着环境和社会伤害,这将对缓解气候变化以及直接过渡到净零的全球目标有效。这些影响通常对公众或决策者看不到。
摘要:磁共振成像(MRI)在评估新生儿的早期脑部降低和损伤方面起着重要作用。使用自动体积分析时,需要进行脑组织分割,然后再进行脑提取(BE)以去除非脑组织。在新生儿脑MRI中仍然是具有挑战性的,尽管存在几种方法,但手动段仍被认为是黄金标准。因此,这项研究的目的是评估早产新生儿MRI的不同方法及其对颅内体积估计(ICV)的影响。这项研究包括22个过早的新生儿(平均妊娠年龄±标准偏差:28.4±2.1周),在期限内获得了MRI脑扫描,没有可检测的病变或先天性状况。手动分割以建立参考脑面膜。使用了四个自动化方法:大脑提取工具(Bet2);简单的流域剥头皮(SWS);高清脑提取工具(HD-BET);和合成条。关于segtimentation指标,HD-bet的表现优于其他方法,中位改进为+0.031(Bet2),+0.002(SWS)和+0.011(合成条)点点骰子系数;和-0.786(BET2),-0.055(SWS)和-0.124(合成条)mm,用于平均表面距离。涉及ICV,SWS和HD-BET提供与手动分割的一致性水平,平均差异分别为-1.42%和2.59%。
*通讯作者(kat35@cam.ac.uk,+44 1223 766 556)1临床神经科学系,剑桥大学,剑桥大学,英国2号剑桥大学,剑桥大学,UK剑桥大学,英国3英国痴呆症研究所,剑桥大学,剑桥大学,剑桥大学4. and Medicine, INM-7, Forschungszentrum Jülich, Jülich, Germany 6 Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy 7 Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK 8 Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands 9阿尔茨海默氏病和其他认知疾病部门,神经病学服务,医院,d'uskespitunsd'unguseciónsBioMèdiquesAugust pi i Sunyer,巴塞罗那大学巴塞罗那大学,巴塞罗那大学10 clinique InterdifcipernairedeMémoire,Département,Département,Départementand de de de de de quecine,de quebique and chudquébecebecineand chudquébecebecine,dequébecnecneand chudquébebecebec。加拿大QC大学拉瓦尔大学11神经生物学,护理科学与社会系; Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden 12 Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden 13 Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy 14 University of Milan, Centro Dino意大利米兰法拉利(Ferrari)15认知神经病学实验室,神经科学系,鲁文库文(Ku Leuven),比利时16神经病学服务局,卢文大学(Leuven),比利时17 Leuven Brain Institute,Ku Leuven,Ku Leuven,Belgium 18,Belgium 1845 Biogipuzkoa健康研究所,神经科学区,神经退行性疾病组,20014年,西班牙圣塞巴斯蒂安。46 Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid, Spain 47 Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy 48 MRC Cognition and Brain Science Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
sidekick-1(SDK1)是前额叶皮层(PFC)功能的新型调节剂。SDK1是免疫球蛋白超家族(IGSF)的一部分,它们是在神经元突触中发现的一组细胞表面蛋白,它们在发育中具有重要作用[1]。研究表明,SDK1基因可能参与调节压力和抑郁症的易感性和韧性的神经回路[2,3]。但是,SDK1在可以调节应力反应的脑电路方面的确切作用尚不清楚。在这里,我们表征了SDK1在促进PFC压力的韧性中的作用。我们使用qPCR量化了各个大脑区域中的SDK1表达,并表明它在PFC中高度表达。此外,要研究不同大脑区域的男性和雌性小鼠慢性社交失败压力后SDK1表达的变化,在PFC上进行了原位杂交,然后使用共斑荧光显微镜进行成像。进行图像分析以量化谷氨酸能和GABA能细胞中SDK1的RNA表达,并发现在应激弹性动物的PFC中发现SDK1 mRNA表达增加。因此,我们假设它可能在PFC函数中起作用,例如行为适应不断变化的环境。我们使用概率逆转学习任务来检查PFC中SDK1过表达的行为效应,以观察特定的细胞类型和性别特异性差异。我们的发现显示在应激势力小鼠的PFC中SDK1的表达升高,这表明其在减轻压力对神经回路的影响中的作用。
Rubrik(NYSE:RBRK)正在执行确保世界数据的任务。使用零信任数据安全™,我们帮助组织对网络攻击,恶意内部人员和操作中断实现业务弹性。Rubrik Security Cloud,由机器学习提供动力,可在企业,云和SaaS应用程序中确保数据。我们帮助组织维护数据完整性,提供可承受不利条件的数据可用性,不断监控数据风险和威胁,并在攻击基础架构时使用其数据恢复业务。
示例 - 该公司已经披露了与身体风险和韧性或适应不良有关的所有相关政府的参与数量和性质。参与可以直接与政府或协作,例如通过行业协会或通过多方利益相关者协作计划直接与公共或私人。投资者正在寻找公司参与支持建立韧性的主题,尤其是在公司依靠政府干预以满足其弹性目标的情况下。公司不应在公开,私下或间接地提倡,游说或担任政策立场,这些主题将破坏适应或增强气候影响的韧性的努力。如果公司确实倡导反对支持性气候政策,则应清楚地解释原因,因此投资者了解理由。
软珊瑚珊瑚礁生态系统的作用越来越受海洋温度,海洋酸性和污染的威胁。高温破坏了珊瑚与它们的共生藻类伴侣之间的关系,导致珊瑚漂白,而较低的pH却削弱了珊瑚骨骼,从而危害了它们的生存。石质珊瑚构成了珊瑚礁的结构基础,但软珊瑚(称为八焦)对于生态平衡至关重要,有助于生物多样性,栖息地供应,营养循环和礁石的韧性。