摘要:Sachdev-Ye-Kitaev(Syk)模型是一个具有随机相互作用和强烈混乱动力学的N Majorana费物的系统,在低能量时,它可以接受全息二重描述,作为二维Jackiw-Teititelboim。因此,SYK模型提供了一种量子重力的玩具模型,该模型可能可行,可以使用近期量子硬件进行模拟。以减少这种模拟所需的资源的目的为动机,我们研究了SYK模型的稀疏版本,其中相互作用项被概率1 -p删除。具体而言,我们按数值计算光谱形式(SFF,Hamiltonian的特征值对相关函数的傅立叶变换)和最接近的邻居特征值间隙比R(表征连续特征值之间间隙的分布)。我们发现,当p大于过渡值p 1(缩放为1 /n 3)时,SFF和r均与完整的非扩展模型所获得的值匹配,并且具有随机矩阵理论(RMT)的期望。但对于p 低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。 我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。
量子场理论在存在强背景字段的情况下包含有关量子计算机有一天可能提供有价值的合成资源的相互关系的问题。在NISQ时代,考虑更简单的基准概率,以开发可行的方法,确定当前硬件的关键局限性并构建新的仿真工具。在这里,我们使用实时非线性BREIT-WHEELER配对生产作为原型过程,对3+1维的强场QED(SFQED)进行量子模拟。在毛茸茸的伏尔科夫模式的扩展中,强烈的Qed hamiltonian被解散和截断,与Breit-wheeler相关的相互作用转化为量子电路。量子模拟与经典模拟非常吻合,包括我们开发并适应具有时间依赖性汉密尔顿的Trotterterization的不对称解答算法。我们还讨论了SFQED量子模拟的长期目标。
引用本文: 解盘石, 杨航, 伍永平, 等 . 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术 , 2024, 52(12): 259-271. XIE Panshi, YANG Hang, WU Yongping. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology, 2024, 52(12): 259-271.
摘要 高强度激光场可以电离原子和分子,也可以引发分子解离。本文综述了利用冷靶反冲离子动量谱和定制强场飞秒激光脉冲的潜力所取得的实验最新进展。说明了通过检测离子动量来对分子结构和小分子取向进行成像的可能性。详细分析了非绝热隧道电离过程,重点关注隧道出口处电子波包的性质。本文综述了电子在圆偏振光隧穿过程中如何获得角动量和能量。电子是一个具有振幅和相位的量子物体。大多数强场电离实验都集中在电子波函数的绝对平方上。电子全息角条纹技术使得能够检索强场电离中的维格纳时间延迟,这是电子波函数在动量空间中的相位的属性。动量空间中的相位与位置空间中的振幅之间的关系使我们能够获取有关电子在隧道出口处的位置的信息。最后,讨论了最近研究强场电离纠缠的实验。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
如果γ= 0,则表达式tr(h b -λ)0-更为常用于“计数函数”,并用n(h b,λ)表示。众所周知,特征值{λn(,b)}n∈Na sa作为b∈R上的函数,可以通过实用分析的特征值分支来识别零件。这是分析扰动理论的经典结果,例如参见Kato [1,第VII章第3和§4]。在此框架中,操作员{h b}形成一种类型(b)自我偶像霍尔态家族。代表家族{H B}光谱的特征值分支通常不维护特定顺序,因为不同的分支可以相交。我们对h b的频谱的行为感兴趣,因为实力b变得很大。我们的第一个结果(定理2.1)处理磁盘的特殊情况。在这里,{h b}b∈R的光谱的所有真理特征值分支都按照融合的超测量功能的根来给出。我们计算所有分析特征值分支的两个学期渐近学。此结果通过Helffer和Persson Sundqvist [2]概括了定理。在本文的第二部分中,我们关注分类特征值λN(,b)的光谱界限以及riesz表示TR(H B -λ)γ-。要在现有文献中找到我们的作品,让我们布里特(Brie brie)总结了重要的相关结果。
观察到扭曲的双层石墨烯中新出现的量子相促使范德 - 瓦尔斯(VDW)材料的活动促进了石墨烯之外的材料。大多数当前的扭曲实验都使用称为PPC的聚合物使用所谓的撕裂和堆栈方法。但是,尽管当前的PPC撕裂和堆栈方法具有明显的优势,但也存在技术局限性,主要是有限数量的VDW材料,可以使用此基于PPC的方法进行研究。这种技术瓶颈一直在阻止少数可用的VDW样品之外的令人兴奋的领域的进一步发展。为了克服这一挑战并促进了未来的扩张,我们使用了强烈的粘合性多丙酮酸(PCL)开发了一种新的撕裂方法。具有相似的角度精度,我们的技术允许制造无上限层,促进表面分析并确保固有的清洁界面和低工作温度。更重要的是,它可以应用于基于PPC的方法仍然无法访问的许多其他VDW材料。我们介绍了通过多种VDW材料制成的扭曲同源物 - 从两种经过良好的VDW材料(石墨烯和MOS 2)到其他VDW材料的首次演示(NBSE 2,NIPS 3和Fe 3 Gete 2)。因此,我们的新技术将有助于将Moiré物理学扩展到少数选定的VDW材料之外,并开辟更令人兴奋的发展。
免责声明:沙特基本工业公司(SABIC)或其子公司或分支机构(“卖方”)的材料,产品和服务被出售,但可应要求提供卖方标准的销售条件。本文档中包含的信息和建议是真诚地给出的。但是,卖方不做明示或暗示的代表,保证或担保(i),即本文档中所述的任何结果将在最终用途条件下或(ii)有关任何设计或应用程序的有效性或安全性,这些设计或应用程序包含卖方的材料,产品,服务或建议。除非卖方的标准销售条件中另有说明,否则卖方对本文档中所述的材料,产品,服务或建议造成的任何损失均不负责。每个用户负责通过适当的最终使用和其他测试和分析来确定卖方材料,产品,服务或建议的适用性。任何文件或口头陈述中的任何内容均不得被视为更改或放弃卖方的标准销售条件或此免责声明的任何规定,除非在卖方签署的著作中明确同意。卖方关于可能使用任何材料,产品,服务或设计的陈述均不是故意的,也不应解释为在任何专利或其他知识产权卖方的销售权或其他材料,服务或设计的建议下以任何侵犯任何专利权或其他知识产权的方式授予任何许可证。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介