蛋白质发现扩展到基因编辑和治疗应用 加州南旧金山(2020 年 1 月 30 日)Mammoth Biosciences 是世界上第一个基于 CRISPR 的疾病检测平台背后的公司,今天宣布其 B 轮融资获得 4500 万美元超额认购。此次融资由德诚资本领投,Mayfield、NFX、Verily 和 Brook Byers 参投,使公司的融资总额超过 7000 万美元。这笔资金将推动该公司进一步开发 CRISPR 诊断和下一代 CRISPR 产品,同时该公司将其平台扩展到包括基因编辑和下一代治疗方法。Mammoth 还在探索与生物技术和制药公司的深度合作,以利用 Mammoth CRISPR 平台改变医疗保健并造福患者。CRISPR 在治疗疾病方面具有巨大的前景,Cas9 的临床试验已经在进行中——这是将 CRISPR 从实验室带入日常生活的关键一步。但是,尽管这种酶在体外环境中显示出成功的初步迹象,但在体内应用方面仍然存在挑战,限制了 Cas9 在广泛疾病领域的广泛应用。此外,Cas9 不能用于基于 CRISPR 的诊断,这是 Cas 系统的一个新兴和突破性应用。Mammoth 凭借其广泛的新型 Cas 系统组合,在克服这些障碍方面具有独特的优势,这些系统可作为诊断、基因编辑和治疗应用的工具箱。4500 万美元的 B 轮融资将推动 CRISPR 平台的开发,特别关注 Mammoth 发现的 Cas14。Cas14 是一种独特的酶,由于其极小的尺寸、多样化的靶向能力和高保真度,开辟了新的可能性。这些特性将使 Mammoth 能够实现下一代编辑,在体外和体内应用中具有更广泛的靶标范围,并为实现先进的 CRISPR 模式(如靶向基因调控、精确编辑等)奠定基础。最近,包括 Casebia(拜耳与 CRISPR Therapeutics 的合资企业)前联合创始人 Peter Nell 和 Synthego 和 Bio-Rad 前高管 Ted Tisch 在内的业内资深人士分别以首席商务官和首席运营官的身份加入了该公司,以加速公司的发展。Grail 联合创始人、前 Illumina 董事会成员 Jeff Huber 已加入公司董事会担任独立董事,斯坦福大学医学院院长 Lloyd Minor 已加入 Mammoth 顾问委员会。Mammoth Biosciences 首席执行官兼联合创始人 Trevor Martin 解释说:“作为 CRISPR 发现前沿的团队,我们亲眼目睹了对新工具的需求,以实现这项技术所提供的治疗和诊断前景。通过为诊断以外的新产品提供支持,我们正在使
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。
夏尔默斯技术大学的生命科学系,SE412 96哥德堡,瑞典B天津工业生物技术研究所,中国科学学院,蒂安金300308,pr中国C中国生命科学学院,中国科学学院,北欧科学学院,北北方,北方,北部。深圳高级技术研究所,中国科学院,深圳518055,中国Pr中国e工程生物学主要实验室低碳工业研究所,工业生物技术学院,中国科学院,中国科学院DK2200哥本哈根,丹麦G Novo Novo Nordisk生物维护基金会,丹麦技术大学DK2800 Kongens Lyngby,丹麦
协作感知允许在多个代理(例如车辆和基础)之间共享信息,以通过交流和融合来获得对环境的全面看法。当前对多机构协作感知系统的研究通常会构成理想的沟通和感知环境,并忽略了现实世界噪声的效果,例如姿势噪声,运动模糊和感知噪声。为了解决这一差距,在本文中,我们提出了一种新颖的运动感知robus-Busban通信网络(MRCNET),可减轻噪声干扰,并实现准确且强大的协作感知。MRCNET由两个主要组成部分组成:多尺度稳健融合(MRF)通过驱动跨语义的多尺度增强的聚集到不同尺度的融合特征,而运动增强机制(MEM)捕获运动上下文,以补偿动作对物体引起的信息,从而解决了姿势噪声。对流行的协作3D对象检测数据集的实验结果表明,在噪声方案中,MRCNET优于使用较少的带宽感知性能的噪声方案。我们的代码将在https://github.com/indigochildren/collaborative-ception-mrcnet上进行重新释放。
1 赞比亚国家公共卫生研究所 通讯作者:Stefanenonde@gmail.com 引用此文章 Chilengi R & Nonde, S. 大声说出来:非洲疫苗叙事必须改变,才能释放非洲大陆的潜力。健康新闻公报。2024;08(3):3-7。
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
(Å) 3FNG Enoyl-[acyl-carrier-protein]reductase [NADH] 1,97 1N2B Pantothenate synthetase 1,70 1GSI Thymidylate kinase complexed with thymidine monophosphate (tmp) 1,60 1MRS Thymidylate kinase complexed with 5-ch2oh deoxyuridine monophosphate 2,00 1眼二氢蛋白酶合酶1 1,70 1SNF脱氧尿苷5-三磷酸盐核苷酸氢化素酶1,85 1SJN脱氧尿苷5-三磷酸核苷酸核苷酸水解酶1,80 1L1EL1EL1E型甲酸酯酸环烷酸酯酶合酶促成了促氧化氢蛋白酶素的素蛋白酶。
摘要 - 准确的定位在自主机器人系统的有效运行中起着至关重要的作用,尤其是在诸如施工站点之类的染色体环境中。同时使用LIDAR传感器同时定位和映射(SLAM)已成为一种流行的解决方案,因为它在没有外部基础架构的情况下可以进行功能。但是,现有的al-gorithms表现出重大的缺点。尽管当前的方法在长期轨迹上达到了很高的准确性,但它们在复杂的室内环境中的精确性和可靠性而苦苦挣扎。本文介绍了一种新型的基于功能的LiDAR SLAM系统,旨在解决这些局限性并增强短期精度和整体鲁棒性。使用现有数据集和物理机器人平台评估了所提出的系统,以解决当前实现的局限性,并在挑战现实世界中,尤其是在施工环境中展示改进的穿孔。
