摘要本文重点介绍了自动驾驶车辆的控制问题之后的路径。旨在增强鲁棒性和衰减现象,基于Lyapunov理论开发了一种超级扭转的滑动模式控制算法(STA),其中通过应用倒退技术来提供控制系统稳定性的证明。此外,进行MATLAB/SIMULINK和CARSIM之间的共模拟以验证控制性能后的路径。在这项研究中,Stanley控制器,常规滑动模式控制(SMC)和模型预测控制(MPC)用作评估提出的STA性能的基准控制器。在模拟中考虑了两种驾驶场景,包括正常驾驶和猛烈驾驶。全面评估控制绩效和控制工作(即转向的大小),新颖地提供了一个集成和加权性能评估指数。仿真结果表明,在正常驾驶情况下,所提出的STA的𝐼𝑊𝑃𝐸𝐼可以减少40.5%,25.8%,10.9%;与斯坦利控制器,常规SMC和MPC相比,在激烈的驾驶情况下,在激烈的驾驶情况下有62.5%,24%,6.8%。结果还表明,所提出的STA在颤动的衰减方面优于常规SMC,从而导致前方向盘角度输入更平滑,并且更平滑。与MPC相比,所提出的STA的优点在于其计算复杂性较低。此外,通过更改车辆质量和轮胎参数来验证控制器的鲁棒性。与基准方法相比,所提出的STA可以将𝐼𝑊𝑃𝐸𝐼的波动减少22.6%,22.3%和5.9%。这些结果表明,对系统扰动的考虑对于超级扭转滑动模式控制器的设计至关重要,这可以改善系统后自动驾驶汽车路径的鲁棒性。
1 赞比亚国家公共卫生研究所 通讯作者:Stefanenonde@gmail.com 引用此文章 Chilengi R & Nonde, S. 大声说出来:非洲疫苗叙事必须改变,才能释放非洲大陆的潜力。健康新闻公报。2024;08(3):3-7。
蛋白质发现扩展到基因编辑和治疗应用 加州南旧金山(2020 年 1 月 30 日)Mammoth Biosciences 是世界上第一个基于 CRISPR 的疾病检测平台背后的公司,今天宣布其 B 轮融资获得 4500 万美元超额认购。此次融资由德诚资本领投,Mayfield、NFX、Verily 和 Brook Byers 参投,使公司的融资总额超过 7000 万美元。这笔资金将推动该公司进一步开发 CRISPR 诊断和下一代 CRISPR 产品,同时该公司将其平台扩展到包括基因编辑和下一代治疗方法。Mammoth 还在探索与生物技术和制药公司的深度合作,以利用 Mammoth CRISPR 平台改变医疗保健并造福患者。CRISPR 在治疗疾病方面具有巨大的前景,Cas9 的临床试验已经在进行中——这是将 CRISPR 从实验室带入日常生活的关键一步。但是,尽管这种酶在体外环境中显示出成功的初步迹象,但在体内应用方面仍然存在挑战,限制了 Cas9 在广泛疾病领域的广泛应用。此外,Cas9 不能用于基于 CRISPR 的诊断,这是 Cas 系统的一个新兴和突破性应用。Mammoth 凭借其广泛的新型 Cas 系统组合,在克服这些障碍方面具有独特的优势,这些系统可作为诊断、基因编辑和治疗应用的工具箱。4500 万美元的 B 轮融资将推动 CRISPR 平台的开发,特别关注 Mammoth 发现的 Cas14。Cas14 是一种独特的酶,由于其极小的尺寸、多样化的靶向能力和高保真度,开辟了新的可能性。这些特性将使 Mammoth 能够实现下一代编辑,在体外和体内应用中具有更广泛的靶标范围,并为实现先进的 CRISPR 模式(如靶向基因调控、精确编辑等)奠定基础。最近,包括 Casebia(拜耳与 CRISPR Therapeutics 的合资企业)前联合创始人 Peter Nell 和 Synthego 和 Bio-Rad 前高管 Ted Tisch 在内的业内资深人士分别以首席商务官和首席运营官的身份加入了该公司,以加速公司的发展。Grail 联合创始人、前 Illumina 董事会成员 Jeff Huber 已加入公司董事会担任独立董事,斯坦福大学医学院院长 Lloyd Minor 已加入 Mammoth 顾问委员会。Mammoth Biosciences 首席执行官兼联合创始人 Trevor Martin 解释说:“作为 CRISPR 发现前沿的团队,我们亲眼目睹了对新工具的需求,以实现这项技术所提供的治疗和诊断前景。通过为诊断以外的新产品提供支持,我们正在使
摘要 - 自主驾驶有可能为更有效的未来移动性奠定基础,要求研究领域通过安全,可靠和透明的驾驶来建立信任。大语言模型(LLM)具有推理能力和自然语言的理解,具有作为可以与人类互动和为人类驾驶员设计的环境互动的自我运动计划的普遍决策者的潜力。尽管这条研究途径很有希望,但当前的自动驾驶方法通过结合3D空间接地以及LLMS的发展和语言能力来挑战。我们介绍了BEV-驱动程序,这是一种基于LLM的模型,用于Carla中的端到端闭环驾驶,它利用潜在的BEV功能作为感知输入。bevdriver包括一个BEV编码器,以有效地处理多视图图像和3D LiDAR点云。在一个共同的潜在空间中,BEV特征通过Q-前者传播,以与自然语言指示保持一致,并传递给LLM,该LLM预测和计划在考虑导航说明和关键场景的同时,可以精确的未来轨迹。在Langauto基准测试中,与SOTA方法相比,我们的模型在驾驶得分上的性能高达18.9%。
通过CRISPR – CAS系统进行的自然原核防御需要在称为适应的过程中将间隔者整合到CRISPR are中。为了搜索具有增强能力的适应蛋白,我们建立了一个永久性的DNA PAC Kaging和Transing(P EDP AT)系统,该系统使用T7 pha ge的菌株将pha ge to packa ge质粒构成,然后将其转移并杀死宿主,然后使用T7噬菌体的不同应变来重复该周期。我们使用PED-PAT来识别更好的适应蛋白 - – Cas1和cas2 - 通过富集具有更高适应性效率的突变体。我们识别出在体内增强的10倍增强的cas1蛋白。在体外,一个突变体具有较高的积分和DNA结合活性,与野生型CAS1相比,另一个突变体具有较高的分解活性。最后,我们结婚说,他们选择的特定座位可降低原始图案。在技术上使用的P EDP或型号屏幕,需要有效,轻松的DNA转导。
这些评估的标志性输出是“燃烧的余烬”图。燃烧的余烬首先在第三次评估报告中使用,以形象化关注的原因,这些原因构成了与气候变化相关的影响以及对各个系统和部门的风险。在这些图中,颜色转变显示出对人类和生态系统的评估风险水平的变化,这是气候变化的函数
16 David L. Hahn(美国Intracell研究小组),本尼迪克特C. Albensi(美国东南部,美国诺瓦),詹姆斯·圣约翰(澳大利亚格里菲斯大学),詹妮·埃克伯格(澳大利亚格里菲斯大学),马克·尼尔森(Mark L.美国医学),朱迪思·惠特姆·哈德森(Judith Whittum-Hudson)(美国韦恩州立大学),艾伦·P·哈德森(美国韦恩州立大学),吉拉姆·萨科(Guillaume Sacco)(大学科特·德·阿祖尔大学Farmaceutici,意大利帕尔马),Nicklas Linz(KI Elements Ltd,Saarbrücken,德国),Nicole Danielle Bell(作者,“森林中潜伏的东西”),Shima T. Moein(气味和品味中心)英国爱丁堡医学院)。16 David L. Hahn(美国Intracell研究小组),本尼迪克特C. Albensi(美国东南部,美国诺瓦),詹姆斯·圣约翰(澳大利亚格里菲斯大学),詹妮·埃克伯格(澳大利亚格里菲斯大学),马克·尼尔森(Mark L.美国医学),朱迪思·惠特姆·哈德森(Judith Whittum-Hudson)(美国韦恩州立大学),艾伦·P·哈德森(美国韦恩州立大学),吉拉姆·萨科(Guillaume Sacco)(大学科特·德·阿祖尔大学Farmaceutici,意大利帕尔马),Nicklas Linz(KI Elements Ltd,Saarbrücken,德国),Nicole Danielle Bell(作者,“森林中潜伏的东西”),Shima T. Moein(气味和品味中心)英国爱丁堡医学院)。
b'by gr \ xc3 \ xb6bner基依据[FJ03]。相比之下,解决80个布尔二次方程的随机,非结构化的系统仍然是一个艰巨的挑战,在实践中尚未完成。饼干属于多元加密系统的第二类。为了减少签名的大小,其设计师使用特殊形状的多项式。每个(二次)公共多项式可以写入f + g \ xc3 \ x97 H,其中f,g和h是n个变量中的仿射形式。关键是在某些输入向量X上评估这一点需要在有限字段中通过非恒定体进行单个乘法。这是一个非常强大的结构:虽然(n + 1)(n + 2) / 2系数描述了通用的二次多项式,但A \ xe2 \ x80 \ x9c biscuit -style \ xe2 \ x80 \ x80 \ x80 \ x9d polynomial仅由3 n n n n + 1 coefficiations进行了充分描述。设计师观察到,与一般MQ问题相比,这种结构可以实现更好的攻击算法。在提交文档[BKPV23A]中,他们提出了一种简单的组合算法,该算法在n变量的n变量中求解饼干 - 式多项式系统,并在有限的字段上使用\ xcb \ x9c o q 3 n/ 4操作,并使用Q元素进行Q元素。这比详尽的搜索\ xe2 \ x80 \ x94要好得多。它需要\ xcb \ x9c o(q n)操作。在一般情况下,没有这种改进的组合算法,这是一个很大的暗示,即额外的结构使问题更容易。