发育基因通常由多种具有重叠活性的元件调控。然而,在大多数情况下,这些元件的相对功能及其对内源基因表达的贡献仍未得到很好的表征。这种现象的一个例子是,已经提出了不同的增强子组来指导肢体顶端外胚层脊和中脑-后脑边界中的 Fgf8。利用体内 CRISPR/Cas9 基因组工程,我们从功能上剖析了这个复杂的调控集合,并展示了两种不同的调控逻辑。在顶端外胚层脊中,Fgf8 表达的控制似乎分布在不同的增强子之间。相反,我们发现在中脑-后脑边界中,三个活性增强子中的一个是必需的,而另外两个是可有可无的。我们进一步剖析了必需的中脑-后脑边界增强子,揭示它也是由必需和可有可无的模块混合组成的。该增强子的跨物种转基因分析表明,其组成可能发生在脊椎动物谱系中。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2025 年 1 月 14 日发布了此版本。;https://doi.org/10.1101/2025.01.14.632548 doi:bioRxiv 预印本
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
Hanadi Chammout 1、Delia L. Adkins 2、Aleece K. Al-Olimat 2、Zeinab Alsaad 1、Beatrice M. Altopp 3、Tuqa Amer 3、Feyi O. Apampa 3、Gwendolyn R. Avery 2、Isaac I. Bazzi 1、Emilia D. Beck 2、Elise L. Beier 3、B. Shafer Belisle 3、Lane Benton 2、Madison M. Bolyard 2、Olivia E. Brain 2、Eldon T. Buckner 2、Shria Roy Chowdhury 1、Jennifer R. Cifranic 2、Liam Cleary 3、Tyler R. Clum 2、Autumn M. Cruz 2、Meghan V. DeGray 3、Isabel L. Echeverry 3、 Haya El dana 1 、 Sarah K. Elkadri 1 、 Paige L. Estep 2 、 Luke R. Falke 2 、 Hannah J. Foor 2 、 Anika S. Gullapalli 1 、 Sandro S. Hakim 1 、 Hussein B. Hazime 1 、 Lauren E. Heininger 2 、 Emma G. Hoeft 2 、 Lauren M. James 2 , Yeowon Jeon 1 , Megan R. Johnson 2 , Laine P. Jordan 2 , Zayd Khan 1 , Sydney K. Kochensparger 3 , Fadi J. Koria 1 , Ruby M. Krasnow 3 , Veronica Lilly 2 , Eileen Lim 3 , Ian T. MacCormack 3 , Andriy Malesh 3 , Mikayla G. Mariano 2、奥黛丽·C·门策2、Katelyn H. Messner 2、Katlyn C. Myers 2、Emily R. Newman 3、Annie M. Richters 2、Liliana Romero 1、Adam Rotem 3、Reese J. Saho 2、Kaname Sawaki 2、Ashley N. Selders 2、Elizabeth Shockney 2、Farah A. Sobh 1、Isabelle F. Speiser 3、Breanna M. Sproul 2、Veronica J. Sroufe 2、Antonia Tollkuci 3、Cassandra C. Trevino 3、Megan A. Vapenik 2、Erin M. Wagner 2、Kayla L Bieser 4、Jamie L. Siders 2、Justin R. Thackeray 3、Jacob D. Kagey 1§
Yoav Ben-Simon, 1,4 Marcus Hooper, 1,4 Sujatha Narayan, 1,4 Tanya Daigle, 1,4 Deepanjali Dwivedi, 1 Sharon W. 4 Way, 1 Aaron Oster, 1 David A. Stafford, 2 John K. Mich, 1 Michael J. Taormina, 1 A. Refugio, 1 A. Martina-Jamena. R. Roth, 1 Shona Allen, 2 Angela Ayala, 1 Trygve E. Bakken, 1 Tyler Barcelli, 1 Stuard Barta, 1 6 Jacqueline Bendrick, 1 Darren Bertagnolli, 1 Jessica Bowlus, 1 Gabriella Boyer, 1 Krissy Brouner, 1 Brittny Casian, 1 7 Chara Chair, Chara Rush, 1 Chara Rush. barty, 1 Rebecca K. Chance, 2 Sakshi Chavan, 1 Maxwell 8 Departee, 1 Nicholas Donadio, 1 Nadezhda Dotson, 1 Tom Egdorf, 1 Mariano Gabitto, 1 Jazmin Garcia, 1 Amanda 9 Gary, 1 Molly Gasperini, 1 Jeffry Goldy, 1 1 Blanche, 1 Lucas Gregory, No. . 1 Francoise Haeseleer, 1 10 Carliana Halterman, 1 Olivia Helback, 1 Dirk Hockemeyer, 2 Cindy Huang, 1 Sydney Huff, 1 Avery Hunker, 1 Nelson 11 Johansen, 1 Zoe Juneau, 1 Brian Kalmbach, 1 Shannon Khem, 1 Emily Kuckel, 1 Lar Rasen, 1 12 Changkyu Lee, 1 Angus Y. Lee, 2 Madison Leibly, 1 Garreck H. Lenz, 1 Elizabeth Liang, 1 Nicholas Lusk, 1 Jocelin 13 Malone, 1 Tyler Mollenkopf, 1 Elyse Morin, 1 Dakota Newman, 1 Lydia Ng, 1 Kiet Ngoste, 1 1 Victoria Oman, 14 h Pham, 1 Christina A. Pom, 1 Lydia Potekhina, 1 Shea Ransford, 1 Dean Rette, 1 Christine 15 Rimorin, 1 Dana Rocha, 1 Augustin Ruiz, 1 Raymond EA Sanchez, 1 Adriana Sedeno-Cortes, 1 Joshua P. Sevigny, 1 Nadi Lava, 16 Lyvalomi Ana R. Sigler, 1 La' Akea Siverts, 1 Saroja Somasundaram, 1 Kaiya 17 Stewart, 1 Eric Szelenyi, 1 Michael Tieu, 1 Cameron Trader, 1 Cindy TJ van Velthoven, 1 Miranda Walker, 1 Natalie 18 Weed, 1 Morgan Wirlin, 1 Toren Wood, 1 Toren Wood, 1 Zilda o, 1 Thomas Zhou, 1 Jeanelle Ariza, 1 Nick 19 Dee, 1 Melissa Reding, 1 Kara Ronellenfitch, 1 Shoaib Mufti, 1 Susan M. Sunkin, 1 Kimberly A. Smith, 1 Luke 20 Esposito, 1 Jack Waters, 1 Bargavi Thyagarajan, 1 Yaqin , 1 Shenq , 1 Sheng Leng . Boaz P. Levi, 1 John 21 Listen, 2,3 Jonathan Ting, 1 Bosiljka Tasic 1,5,* 22
G2 DNA/RNA增强子可以方便地使用,尤其是尤其是粘土中需要最佳的DNA和/或RNA提取产率时。G2 DNA/RNA增强子的主要功能是减轻抑制性DNA-粘土颗粒的形成。G2 DNA/RNA增强子增加了粘土的微生物DNA和RNA产量 - 至少2-10倍。G2 DNA/RNA增强剂应与标准化提取方法或用于从土壤和粘土中提取DNA和RNA的商业试剂盒结合使用。建议在-20至25°C处进行存储和稳定性存储。保持干燥。质量控制G2 DNA/RNA增强子进行污染活性,没有核酸内核酸酶活性,缺口活性,外切核酸酶活性或RNase活性的痕迹。此外,在难以提取的矩阵中,对G2 DNA/RNA增强子进行了功能测试。套件组件Ampliqon G2 DNA/RNA增强子冻结干燥的G2 DNA/RNA增强剂和2 mL管中的1.4 mM珠。协议使用G2 DNA/RNA增强子时,该方案是DNA和RNA提取的指南。G2 DNA/RNA增强子必须使用提取套件施加。程序:将0.25克土壤样品添加到G2 DNA/RNA增强器管中。应用您的DNA或RNA隔离套件。例如Dneasy Powersoil Pro Kit。o如果套件的珠珠管中包含裂解缓冲液,请将此裂解缓冲液转移到G2管上,并丢弃现在空的套件的珠珠管。
增强子或顺式调控元件可确保在发育过程中对基因表达进行精确的时空控制。该过程由转录因子 (TF) 和辅激活因子介导,它们将调控信息从增强子传递到其目标启动子,跨越的距离可能超过一兆碱基 1-4 。这种增强子-启动子 (E-P) 通讯被认为发生在所谓的拓扑相关结构域 (TAD) 内,拓扑相关结构域是通过黏连蛋白和 CCCTC 结合因子 (CTCF) 的环挤压过程形成的基因组基本组织单位 5-7 。TAD 或 TAD 内染色质相互作用的破坏可能导致基因表达或基因激活的错误下调,并可能导致人类疾病,这表明正确的 E-P 通讯对基因激活的重要性 8-10 。
分别为5.9±0.9 µ f或83±13 µ f/cm 2; n = 3),尽管阳离子的尺寸非常不同
转录因子 SRY 相关 HMG 盒 9 (Sox9) 对软骨形成至关重要。SOX9 内部和周围的突变会导致以骨骼畸形为特征的软骨发育不良 (CD)。尽管 Sox9 在此背景下的功能已被充分研究,但调节软骨细胞中 Sox9 表达的机制仍有待阐明。在这里,我们使用全基因组分析来识别位于负责 CD 的近端断点簇中的 2 个 Sox9 增强子。E308(位于 5′ 上游 308 kb)和 E160(位于 5′ 上游 160 kb)的增强子活性与 Sox9 表达水平相关,并且两种增强子在体外均表现出协同作用。虽然小鼠中的单个缺失没有明显影响,但同时缺失 E308 和 E160 会导致侏儒表型,同时软骨细胞中 Sox9 表达减少。此外,在 E308/E160 缺失小鼠中,肢体芽间充质细胞的骨形态发生蛋白 2 依赖性软骨细胞分化严重减弱。最后,我们发现在 E308/E160 缺失小鼠中,Sox9 基因上游的开放染色质区域被重组,以部分补偿 E308 和 E160 的缺失。总之,我们的研究结果揭示了软骨细胞中 Sox9 基因调控的机制,这可能有助于我们理解骨骼疾病的病理生理学。
摘要:小米是禾本科的一种小粒谷物。它们被认为是气候适应性强、未来人类营养丰富的谷物。与其他主要谷物相比,小米对生物和非生物胁迫具有抗性,在低质量、维护较少、降雨较少的土壤中生长良好。由于小米在亚洲和非洲半干旱热带地区不太流行和不常种植,许多人仍然不太了解小米的重要性。联合国已宣布 2023 年为国际小米年 (IYM 2023),以促进小米种植并在全球范围内推广其健康益处。几年前,由于缺乏基因组序列,分子生物学在小米中的应用还处于起步阶段。大多数小米的基因组序列都可以在 NCBI 和 Phytozome 数据库中找到。在这篇综述中,我们讨论了小米基因组序列的细节,以及从小米原生基因组中识别出的候选基因。本文还讨论了小米数量性状基因座和全基因组关联研究的现状。利用小米基因组序列进行功能基因组学研究并将信息转化为作物改良将有助于小米和非小米谷物在未来的恶劣环境中生存。这些努力将有助于加强粮食安全并减少 2050 年全球营养不良。