从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
增强子产生双向非编码增强子RNA(ERNAS),可能调节基因表达。目前,ERNA函数仍然神秘。在这里,我们报告了一个5'上限的反义ERNA珍珠(与R-Loop组相关的PCDH ERNA),该珍珠从原始粘蛋白(PCDH)αHS5-1增强子区域转录。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA和CRISPRA以及锁定的核酸策略以及CHIRP,MEDIP,DRIP,QHR-4C和HICHIP实验,我们建立了PCDH lo loble(pcdh loble),通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。 尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。 这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。
feixa llarga,08907,L'BositaTET de llobregat,巴塞罗那,西班牙运行标题:内含子增强剂铅组织特异性调节关键字:增强剂,内含子,基因调控,组织功能,组织功能,组织模式
图1与胶质母细胞瘤风险相关的20染色体区域。使用UCSC基因组浏览器,使用铅SNP rs2297440,r 2> .6的LD块定义的区域,使用UCSC基因组浏览器显示了推定的增强元素,其中包含RS2297440的LD中包含SNP的推定增强元素。SNP在该区域的基因下面观察到。seq轨道,来自SNP以下NHA的H3K4ME1表明潜在的增强子元素。区域1表示在荧光素酶测定中没有增强剂活性的区域。区域2表示等位基因特异性增强子区域,其中包括RS3761124(标有星号)。区域3和4表示表现出增强剂活性但不受单倍型影响的区域。应注意,测试的增强剂活动的区域的大小不是扩展。ld,连锁不平衡; SNP,单核苷酸多态性;加利福尼亚大学圣克鲁斯大学UCSC
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
2 杜克大学基因组与计算生物学中心,北卡罗来纳州达勒姆 27708,美国 3 杜克大学生物医学工程系,北卡罗来纳州达勒姆 27708,美国 4 杜克大学遗传学与基因组学大学项目,北卡罗来纳州达勒姆 27708,美国 5 杜克大学医学中心综合基因组学分部生物统计学与生物信息学系,北卡罗来纳州达勒姆 27708,美国 6 杜克大学医学中心外科系,北卡罗来纳州达勒姆 27708,美国
转录增强子能够对后生动物的基因表达进行精确的时空控制。组蛋白 H3 赖氨酸 4 (H3K4me1) 的单甲基化富集是转录增强子的主要染色质特征。赖氨酸 (K) 特异性脱甲基酶 1A (KDM1A,也称为 LSD1) 是一种 H3K4me2/me1 脱甲基酶,可在小鼠胚胎干细胞 (mESC) 分化过程中使干细胞增强子失活。然而,其在未分化 mESC 中的作用仍不清楚。在这里,我们表明 KDM1A 在未分化和谱系定向细胞中都积极维持最佳增强子状态。KDM1A 占据了未分化 mESC 中的大部分增强子。增强子处的 KDM1A 水平与其底物 H3K4me2、H3K27ac 和增强子处的转录呈现明显的正相关性。在缺乏 Kdm1a 的 mESC 中,这些增强子中的大部分获得了额外的 H3K4 甲基化,同时伴有 H3K27 乙酰化增加以及增强子 RNA (eRNA) 和靶基因表达增加。在有丝分裂后的神经元中,KDM1A 的缺失会导致神经元活动依赖性增强子和基因的过早激活。总之,这些结果表明 KDM1A 是一种多功能的增强子调节器,并充当变阻器,通过平衡增强子处的 H3K4 甲基化来维持最佳增强子活性。
抽象的广场荧光显微镜用于监测大脑神经元种群的峰值。广场荧光可以起源于皮质中所有深度的指标分子,而索马塔,树突和轴突的相对贡献通常是未知的。在这里,我模拟了广场照明和荧光收集,并确定几种GCAMP小鼠系的荧光的主要来源。散射强烈影响照明和收集。一个结果是,照明强度最大〜300-400 m以下,而不是在大脑表面。另一个是从皮质深处的荧光可能延伸到脑表面3–4 mm的直径,严重限制了横向分辨率。在许多小鼠线中,有助于荧光的组织体积延伸到大多数表面位置的整个皮层和荧光深度是多个皮质柱的加权平均值,通常是一个以上的皮质区域。