粘合接头在组装承重结构的结构可靠性和耐久性中起着重要作用。这项研究的灵感来自风力涡轮机叶片的应用,风力涡轮机叶片由复合材料制成,并通过粘合剂连接在一起。与传统的粘合接头指导原则相反,风力涡轮机叶片接头厚度较大,约为 10 毫米。出现空隙和孔隙的概率很高。尽管如此,机器的经济寿命为 20 年,疲劳可能是一个关键现象。这项研究侧重于自下而上的粘合剂性能表征及其在复合材料接头中逐层验证。它从本体粘合剂的表征开始,直至粘合接头样品和子部件。本文重点关注粘合剂材料本身和接头的水平。经过大量的实验,特别关注粘合剂的孔隙率,开发了一种概率方法来确定最合适的失效准则。强度预测方法不仅考虑应力分布的大小,还考虑应力作用的体积,从而考虑材料强度的统计尺寸效应。该方法随后用于简单接头中接头强度的数值预测以及受风力涡轮机叶片启发的应用中。接头的预测阻力与实验接头测试非常一致。
ance,本会可批准该方法作为替代方法。在这种情况下,为了验证晃荡载荷的评估至少与本指南的标准相当,应向本会提交相关信息,并与本会协商评估方法。从最初的设计阶段开始,应充分讨论使用不同方法的目的。
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s
摘要:Al-Sn-Al晶圆键合是一种新型的半导体制造技术,在器件制造中发挥着重要作用,键合工艺的优化和键合强度的测试一直是关键问题,但仅通过物理实验来研究上述问题存在实验重复性强、成本高、效率低等困难。深度学习算法可以通过训练大量数据快速模拟复杂的物理关联,很好地解决了晶圆键合研究的困难。因此,本文提出利用深度学习模型(2层CNN和50层ResNet)实现不同键合条件下键合强度的自主识别,对比测试集结果表明ResNet模型的准确率为99.17%,优于CNN模型的91.67%。然后利用Canny边缘检测器对识别出的图像进行分析,结果显示晶圆的断裂面形貌为孔状结构,且晶圆表面孔移动面积越小,键合强度越高。此外,还验证了键合时间和键合温度对键合强度的影响,结果表明相对较短的键合时间和较低的键合温度可获得更好的晶圆键合强度。本研究展示了利用深度学习加速晶圆键合强度识别和工艺条件优化的潜力。
f q / a(x q),f q / b(x q):Parton分布函数(PDFS)表示概率密度,以在Hasdron b中找到具有动量分数x q的夸克q,而具有动量分数x q,具有动量分数x。
π 共轭聚合物具有导体和半导体的电子功能性。理想情况下,它们还应具有工程塑料的机械稳定性,因为半导体聚合物的机械性能是决定器件应用的关键因素。然而,对半导体聚合物机械性能的大部分研究都集中在提高与“柔软度”相关的参数上,即低模量和高断裂应变。[1] 这一重点主要受到人们对可拉伸器件的兴趣驱动,例如柔性薄膜晶体管、太阳能电池和传感器。对增加柔软度的强调与半导体聚合物的许多引人注目的应用不相容,在这些应用中强度和硬度都是必需的。例如,与屋顶、道路、人行道、停车场以及车辆和航空表面集成的薄膜太阳能电池;
得益于过去 20 年量子信息科学 (QIS) 的快速发展,潜在的 QIS 应用数量急剧增加,包括量子计算和量子信息处理、量子密码和量子传感。这些应用的物理平台种类也在稳步增加。大多数量子信息载体基于特定频率的电磁辐射,因此不同平台之间的直接接口极具挑战性,甚至不可能实现 [1,2]。这重新引起了人们对解决不同平台之间本地和远程互连问题的兴趣 [3,4]。高效的频率转换器能够改变量子态的频率而不会引起退相干,因此提供了一种理想的解决方案。已经提出并实现了几个这样的系统 [5,6],其中许多依赖于非线性光学材料,并且通常需要波导或腔体来实现足够的非线性 [7,8]。热原子或冷原子中的非线性过程是一种很有前途的替代方案,因为原子共振附近的非线性相互作用得到了强烈的增强。Rb 或 Cs 原子中的双梯形(或菱形)方案对于频率转换特别有吸引力 [9-11]。鉴于碱金属原子已成为
吉隆坡:政府设定了一个雄心勃勃的目标,以将国家对国内生产总值(GDP)的碳强度降低到2030年,高达45%。这符合到2050年达到零排放的全球目标,在该目标上,气候变化意识在全球范围内正在上升,如对可持续解决方案的需求所示。该部的重点是社会意识在集体行动对环境的深远影响方面的重要性。“尽管马来西亚对全球温室气体(GHG)排放的贡献仅为0.69%,但政府仍致力于减少国家碳排放。
这项研究检查了左侧疼痛的强度,质量和持久性的影响,对痛苦区域的发病率,模式和临床CBARACTERISTIAD的影响。包括四名连续牙齿后牙痛的连续患者,包括牙齿紧急诊所。患者完成了一份标准的临床问卷,该问卷由疼痛强度的数值评级量表组成,并从描述PAM质量的形容词列表中选择了口头描述。此外,患者还指示了通过在头部和颈部的人体模型上绘制疼痛来提及的部位。疼痛强度显着影响引用疼痛的存在(p <.005)。但是,持续时间和疼痛质量都不会影响转介疼痛的发生。最后,在人体模型图中所指示的垂直层压板中发生了疼痛转介,但由于水平重叠的广泛重叠,但并未发现这些疼痛是诊断性的。强度和转介的关联归因于中枢神经系统过度XiTabiiity,导致接受场的扩张以及疼痛的扩散和转诊。 )Orofacial Pain 1996; 10:232-239。Orofacial Pain 1996; 10:232-239。