活动 (IVA) 太空服。本文介绍了为对 IVA 太空服进行人体评级而进行的测试和分析,包括在高保真飞行环境中的人体测试,以及氧气兼容性评估 (OCA) 的摘要,以及对我们的自动压力调节系统 (APReS) 的机制审查。机构审查委员会 (IRB) 批准的我们的太空服防水测试于 2018 年 4 月在康涅狄格州格罗顿的 Survival Systems 进行,包括 12 名测试对象和从降落伞和太空舱中逃生的场景,与综合太空飞行服务合作。IRB 批准的微重力飞行测试继续进行,这是我们与加拿大国家研究委员会 (NRC) 合作的第 4 年,也是与综合太空飞行服务合作。与 NRC 一起完成了四次微重力飞行,在加压操作中使用了我们的 IVA 太空服。我们与 NASA JSC 签订的太空法案协议 (SAA) 支持马歇尔太空飞行中心 (MSFC) 的工程师进行的 OCA,以及与 MSFC 工程师对我们的自动压力调节器的物理审查。我们的压力服的织物焊接强度测试是在东北大学的协助下进行的。
本报告涵盖了 WPI0 内的活动,该活动的目的是审查现代陶瓷材料的电气强度测试。描述了开展这项工作的背景以及所采用的实验方法。使用氧化铝基板产品和两种 PZT 压电材料,研究了与样品的几何形状和生产方法相关的各种因素。使用众所周知的威布尔分布对击穿数据进行统计评估,以确定该方法对电气强度的可用性。得出了以下结论。.厚度在 1.0 到 0.25 毫米之间且电气强度超过 100 kV/mm 的薄平面试件可以在变压器油中测试时进行电极化和测试,而不会出现边缘跟踪或闪络问题;.可以使用足够的试件系统地解决电气强度的差异,并且已经获得的示例表明电极面积效应、厚度效应和加工/退火效应;.无需对试件进行压痕以防止边缘闪络;在薄试件上产生小凹痕并非易事,需要专门的精密设备; .从名义上相同的样品的测试结果发现,其电气强度存在差异,可以用双参数威布尔分布来表示; .薄蒸发电极的质量必须使得击穿位置
使用微生物诱导的碳酸钙沉淀(MICP)技术可以改善粉质粘土的机械性能,而粘性米粉可以增强微型活性,提高CACO 3降水的转化率,并有助于提高土壤强度。通过添加不同的老化米米浆液和胶结液体,以及无限制的抗压强度测试和扫描电子显微镜分析固体样品,进行了MICP固化测试。研究了粘性稻糊的强度生长机制,结果表明,粘性的米浆可以改善微生物的酶促活性,即,微生物可以产生更多的尿素,可以使尿素分解尿素,并且随着尿布的量增加,促尿液的浓度会增加ic的浓度,并增加了ic的浓度。当添加的煮熟的大米浆液的浓度为5%时,土壤的不受限制抗压强度最大。此外,扫描电子显微镜分析表明,冷却的粘性米浆可以用作产生大量无效的含碳酸的桥梁。钙原子被连接在一起形成有效的碳酸钙,碳酸钙填充了整个土壤的孔,增加了土壤的紧凑性并大大提高了其宏观机械强度。
Final Frontier Design (FFD) 继续开发和测试舱内活动 (IVA) 太空服。本文介绍了为对 IVA 太空服进行人体评估而进行的测试和分析,包括在高保真飞行环境中进行的人体测试,以及氧气兼容性评估 (OCA) 的摘要和对我们的自动压力调节系统 (APReS) 的机制审查。机构审查委员会 (IRB) 批准的我们的太空服水上逃生测试于 2018 年 4 月在康涅狄格州格罗顿的 Survival Systems 进行,包括 12 名测试对象和从降落伞和太空舱逃生的场景,与综合航天服务合作。IRB 批准的微重力飞行测试继续进行,这是我们与加拿大国家研究委员会 (NRC) 合作的第 4 年,也是与综合航天服务合作。与 NRC 一起完成了四次微重力飞行,在加压操作中使用了我们的 IVA 太空服。我们与 NASA JSC 签署的《太空法案协议》(SAA)支持马歇尔太空飞行中心(MSFC)工程师进行的 OCA,以及与 MSFC 工程师一起对我们的自动压力调节器进行的物理审查。在东北大学的协助下,我们对压力服进行了织物焊接强度测试。
Final Frontier Design (FFD) 继续开发和测试舱内活动 (IVA) 太空服。本文介绍了为对 IVA 太空服进行人体评估而进行的测试和分析,包括在高保真飞行环境中进行的人体测试,以及氧气兼容性评估 (OCA) 的摘要和对我们的自动压力调节系统 (APReS) 的机制审查。机构审查委员会 (IRB) 批准的我们的太空服水上逃生测试于 2018 年 4 月在康涅狄格州格罗顿的 Survival Systems 进行,包括 12 名测试对象和从降落伞和太空舱逃生的场景,与综合航天服务合作。IRB 批准的微重力飞行测试继续进行,这是我们与加拿大国家研究委员会 (NRC) 合作的第 4 年,也是与综合航天服务合作。与 NRC 一起完成了四次微重力飞行,在加压操作中使用了我们的 IVA 太空服。我们与 NASA JSC 签署的《太空法案协议》(SAA)支持马歇尔太空飞行中心(MSFC)工程师进行的 OCA,以及与 MSFC 工程师一起对我们的自动压力调节器进行的物理审查。在东北大学的协助下,我们对压力服进行了织物焊接强度测试。
Final Frontier Design (FFD) 继续开发和测试舱内活动 (IVA) 太空服。本文介绍了为对 IVA 太空服进行人体评估而进行的测试和分析,包括在高保真飞行环境中进行的人体测试,以及氧气兼容性评估 (OCA) 的摘要和对我们的自动压力调节系统 (APReS) 的机制审查。机构审查委员会 (IRB) 批准的我们的太空服水上逃生测试于 2018 年 4 月在康涅狄格州格罗顿的 Survival Systems 进行,包括 12 名测试对象和从降落伞和太空舱逃生的场景,与综合航天服务合作。IRB 批准的微重力飞行测试继续进行,这是我们与加拿大国家研究委员会 (NRC) 合作的第 4 年,也是与综合航天服务合作。与 NRC 一起完成了四次微重力飞行,在加压操作中使用了我们的 IVA 太空服。我们与 NASA JSC 签署的《太空法案协议》(SAA)支持马歇尔太空飞行中心(MSFC)工程师进行的 OCA,以及与 MSFC 工程师一起对我们的自动压力调节器进行的物理审查。在东北大学的协助下,我们对压力服进行了织物焊接强度测试。
摘要:这项研究研究了波特兰水泥粘贴的水合,微结构,自动收缩率,电阻率和机械性能与PEG-PPG Triblock共聚物进行了不同的分子量。使用VICAT测试和等温量热法检查了包括设定时间和水合热量在内的幼年特性。分别使用热重分析(TGA)和氮吸附分析了水合产物和孔径分布。使用压缩强度测试和电化学阻抗光谱(EIS)评估了机械性能和电阻率。表明,由于共聚物在共聚物的分子结构中存在疏水块(PPG),因此添加共聚物会降低水泥糊孔溶液的表面张力。在对照糊中的设定时间和水合热以及与共聚物修饰的粘贴相对相似。结果表明,共聚物能够减少糊状物中的自体收缩,这主要是由于孔隙溶液溶液表面张力的降低。TGA显示与共聚物修饰的糊剂的水合度略有增加。在与共聚物修饰的糊状物中降低了抗压强度,该粘贴量显示出空气量增加的共聚物。添加共聚物不会影响糊状物的电阻率,除非有大量的空气空隙(充当电绝缘体)。
本研究提出了一种替代(即空气辅助)系统,使用从苏-22或米格-29战斗机发射的火箭将有效载荷(微型卫星)发射到太空。本文从多个方面验证和评估了这种用于将有效载荷发射到低地球轨道(LEO)的空气辅助火箭系统。任务概况和火箭投放机动概念已经制定出来。从所采用的计算模型和模拟结果可以看出,在所考虑的配置下,上述飞机将能够完成将至少10公斤的有效载荷发射到低地球轨道的任务。这些分析与模拟和风洞试验相辅相成,验证了太空火箭可能对运载机的空气动力学和机械性能产生的影响。对空气辅助火箭发射系统模型进行的数值模拟和风洞试验结果表明,火箭对飞机的空气动力学特性及其飞行特性的影响可以忽略不计。同样,机身承重结构所经受的负载和强度测试也未显示因所附太空火箭而引起的任何重大变化或变形。拟议的套件可视为波兰武装部队所谓的响应性太空资产。实施这样的系统不仅可以使我们摆脱对提供太空服务的国家或商业公司的依赖,而且还使我们能够在部署用于安全和防御目的的卫星系统的背景下掌握新能力。
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s
摘要:新月城防波堤位于加利福尼亚海岸线上,距俄勒冈州边界以南约 17 英里。1974 年和 1986 年,防波堤特别容易受到损坏的部分铺设了软石。自 1986 年以来,一直对水上软石弯矩和破损进行监测。2004 年 8 月,对新月城防波堤的软石部分进行了详细的监测调查。此次监测的目的是了解软石的长期结构响应。详细监测包括地面调查、航空摄影、摄影测量分析和破损装甲单元调查。结果表明,自 1988 年初始筑巢期结束以来,小墩石几乎没有发生移动。此外,自 1993 年以来没有观察到任何小墩石断裂。从 1995 年到 1999 年,从 1986 年和 1974 年铸造的小墩石中获取了岩芯样本,以确定结构中非承载(靠近混凝土盖)和高承载区域(靠近静水位)单元的现场强度。对岩芯进行了标准实验室混凝土强度测试。结果表明,自建造以来,非承载单元的结构强度已大大提高。但是,静水位附近高承载单元中的单元的混凝土强度接近恒定。