摘要 — 无人驾驶飞行器 (UAV) 集群通常用于离网场景,例如灾难发生、战争肆虐或农村地区,在这些地方,无人机无法接入电网,只能依靠可再生能源。考虑到主电池由两种可再生能源(风能和太阳能)供电,我们根据财务预算、环境特征和季节变化来扩展此类系统。有趣的是,能源来源与无人机的能量消耗相关,因为强风会导致无人机悬停变得越来越耗能。目标是最大限度地提高特定位置的覆盖成本效率,这是一个组合优化问题,用于在非凸标准下确定多元能源发电系统的尺寸。我们设计了一种定制算法,通过抽样降低处理复杂度并减少解决方案空间。评估是使用供应商提供的价格驱动的风能、太阳能和单位面积交通负荷的浓缩真实数据进行的。该项目在四个风力或太阳能强度不同的地点进行了测试。风力较小、太阳辐射强的地点效果最好,而风力强、太阳辐射低的地点则需要更高的资本支出 (CAPEX) 分配。
非洲气象和水文观察网络中存在较大差距是一个主要问题。在过去25年中,非洲观察站的数量通常一直在缓慢下降。下降的观察结果意味着,在非洲许多地方,即使近年来数值天气预测模型的解决方案大大增加,预测的质量也没有提高。一个特别严重的问题是,在2015年1月至2020年1月之间,非洲的关键守护体观察数量(导致数值预测模型的准确性的最大贡献者)减少了多达50%(即在COVID-19-19大流行之前),主要是由于缺乏资金。这些观察结果是准确可靠的天气预报的基础,对干旱,洪水,强风,沙尘暴等灾害的预警,以及许多社会经济部门的决策支持工具。因此,至关重要的是,至关重要的是,政府为其国家气象和水文服务提供更多支持,以在接下来的几年中在非洲实施WMO全球基本观察网络(GBON),因为收集的数据是一种国家“公共商品”,这是一种国家的“公共商品”,可以生产出良好的预测和提供良好的服务,以保护生活,财产,财产和经济活动。
温室种植条件不同于室外种植条件,有其优点和缺点。可以列举的一些优点是种植园与外界影响(如天气(城市、强风等)、不健康的阳光、昆虫等)的减少或完全隔离。温室种植的缺点是必须控制温室内的温度,定期通风,为种植的作物提供新鲜空气,由于温室效应,土壤质量会随着矿物质的消耗而下降,等等。由于温室减少了很大一部分外部影响,因此有必要以某种方式监测和控制可能对温室种植园的产量和种植产生不利影响的参数,其中一部分已列出。人为因素最容易出错,并且无法清洗和控制所有参数。这一问题尤其体现在早晨需要给温室通风时,温室内的湿度超过 85%,温差很大(温室内的温度远高于外界温度),所以打开温室时植物会受到温度冲击,这会对植物和水果本身产生不利影响。早期的研究 [1] 基于测量环境 / 大气参数并将其存储在安全数据 (SD) 卡上,测量期间无法访问,以便最终用户了解当前结果。研究 [2] 基于无线通信,将测量的大气 / 环境参数存储在具有商业数据保护的商业云或数据库中。研究 [3] 描述了基于物联网的智能家居系统。
摘要 本文件旨在为执业工程师和建筑规范官员提供技术资源,该资源 (i) 描述了在模拟自然风的流动中测试建筑物和其他结构的现行做法,(ii) 为讨论这些做法所需的改进提供了基础。需要进行改进,因为正如最近的研究表明,(i) 风洞测试可能根据进行测试的风洞实验室产生截然不同的结果,以及 (ii) 基于记录不足或不充分的风洞测试的风荷载标准规定可能会出现严重错误。本报告概述了 ASCE 7 标准的传统(即分析和简化)方法中固有的风效应估计过程的主要要素。概述的结构清晰,清楚地确立了这些要素及其相关学科(微气象学、空气动力学、统计学、风气候学、结构可靠性)与工程设计的相关性。然后使用为该概述开发的结构来讨论风洞方法估算过程的要素,这些要素与 ASCE 7 的传统方法相似,但通常更为复杂。该报告为风洞方法的未来发展和标准化提供了建议指导。可以纳入标准规定的风效应建模和计算程序的改进可以大大有助于减少强风造成的损失以及材料和体现的能量消耗。关键词:空气动力学;建筑规范;微气象学;统计学;结构动力学;结构可靠性;风气候学;风洞;风工程。
摘要:近年来,人们对自然通风解决方案的兴趣日益浓厚,将其作为实现可持续和节能建筑设计的一种手段。风捕器是一种古老的中东建筑元素,现已成为现代建筑中可行的被动冷却装置,从而提高了室内空气质量,减少了对机械通风系统的依赖。据推测,集成上翼墙 (UWW) 可以通过优化风捕获、空气循环和热调节来增强风捕器的有效性。因此,本研究旨在探索将双面风捕器与 UWW 结合起来的影响,特别强调 UWW 角度对建筑空间内通风性能的影响。为了实现这一目标,进行了一系列数值模拟,以评估风捕器和翼墙配置在不同 UWW 角度和不同风速条件下的协同作用。作为研究方法的第一步,通过比较数值结果和实验数据来验证 CFD 模型。研究结果表明这些方法之间具有良好的一致性。在下一阶段,对不同 UWW 角度(范围从 0 ◦ 到 90 ◦)的捕风器进行了严格评估。结果表明,30 ◦ 角的配置在关键通风参数(包括气流速率、换气率和空气平均年龄)方面表现出最佳性能。最后,对选定的配置在不同风速条件下进行了评估,结果证实即使在低风速条件下,捕风器也能提供符合标准要求的通风水平。
促进造船业和其他行业的经济高效运营。此外,我们广阔的海洋水域非常适合利用波浪、潮汐、热喷口和其他自然海洋资源的可再生能源计划。尽管我们的社会在过去几个世纪中取得了进步,但我们的脆弱性却只增不减:渔业、水产养殖业和沿海工业受到越来越严重的季节性台风的困扰。强风、过度降雨和海洋酸化等气候变化的影响使情况更加恶化。土地复垦和流域化学和固体废物污染造成的物理损害进一步加剧了这种情况。这些问题要求通过“从高地到海洋”的陆地、沿海和海洋管理方法进行综合、和谐的规划和发展,这应该是政府的首要任务。菲律宾渔业和水产养殖业的现代化以及海洋保护区的适当维护,对于提高海洋生产力和海洋生物多样性的福祉极为有效。例如,我们的海洋遗传资源 (MGR) 位于珊瑚三角区,是全球海洋生物多样性的中心,可以产生用于各种药物和其他用途的新型生物活性化合物。因此,应该筛选、研究和分离来自细菌、真菌、藻类、其他植物和动物等海洋生物的 MGR,以寻找具有止痛、抗感染和抗癌作用的药物。此外,虽然从我们的海洋中提取矿物和其他材料如果得到可持续管理,可以带来利润和收益,但其他收益和成本(对公共和私营部门而言)也应该计入其开发计算中。
一般信息 夏季,台风经常袭击佐世保。岛上大多数建筑都设计为可抵御强风,但偶尔也会发生轻微损坏,通常是被风吹来的碎片造成的。最重要的安全因素是留在室内,特别是在必须呆在室内的情况下。 风暴很可能在一两天内过去。提前计划可以让您舒适地度过风暴,而不是在黑暗中忍受长达四天的饥饿、口渴、无聊和困倦。 请记住,在严重风暴期间,电力、自来水和电话线等公用设施可能会中断。可能需要几天时间才能恢复。显然,这会使做饭、洗澡、与他人交流和卫生更加困难。 在救援到来之前,您的家人是否准备好应对与台风有关的紧急情况?以下是一些建议您“做的事情”,可以帮助您做好准备: 准备您的工具包 1. 一种准备方法是组装一个灾难/台风物资工具包。如果/当台风/灾难来袭时,您将没有时间购物或寻找物资。但如果您提前收集了物资,您的家人可以忍受疏散或居家隔离。 - 查看下面的清单。 - 收集列出的物资。 - 将疏散最可能需要的物资放在易于携带的容器中。可能的容器包括大行李袋、大露营背包、大有盖容器(带轮子) 工具包:以下是您应该为家庭储备的一些基本物品:
概述 美国海军工程司令部东南司令部已经建立了区域呼叫中心 (RCC),为美国海军工程司令部东南责任区 (AOR) 提供服务。RCC 位于杰克逊维尔海军航空站,由政府和合同工全职值班,24/7/365 不间断工作。RCC 通过电子邮件和电话接收紧急、加急、常规和 IMP 服务请求。所有服务请求均按照个人 PWD 标准操作程序 (SOP) 进行处理,并纳入 MAXIMO。首次启动于 2012 年 1 月 30 日。RCC 目前处理美国海军工程司令部东南、西北和夏威夷 AOR 的 22 个设施的所有紧急、加急、常规和 IMP 请求。如果发生可预见/不可预见的紧急情况,导致 103 号楼在 24-48 小时内无法使用,RCC 将把 24/7 全天候运营转移到 110 号楼 2014 室 2 楼备用紧急运营中心 (EOC)。如果发生可预见的持续超过 48 小时的紧急情况(例如飓风),救援协调中心将把业务转移到彭萨科拉海军航空站。联邦雇员需要出示个人政府信用卡才能出行。合同雇员的预授权将通过合同官员进行协调。救援协调中心计划在 COR 3 撤离,那里可能在 48 小时内出现破坏性强风(50 节)。救援协调中心将在 COR 2 撤离,那里预计在 24 小时内会出现破坏性强风。根据紧急情况的严重程度、持续时间和时间,救援协调中心将把全天候业务转移到杰克逊维尔海军航空站 110 号楼或彭萨科拉海军航空站 3561 号楼。彭萨科拉海军航空站被认为是救援协调中心的首选地点,因为那里有可用的设施、合理的驾驶距离,不需要乘飞机,而且单一天气事件同时导致彭萨科拉海军航空站和杰克逊维尔海军航空站无法运行的可能性很小。彭萨科拉海军航空站已将 3561 号楼指定为我们的临时呼叫中心。RCC 将在 EROC 工作,该 EROC 为 RCC 指定了 8 个 NMCI 工作站和 8 个可用的电话连接。RCC 人员将携带笔记本电脑,并利用彭萨科拉现有的显示器以双显示器配置进行操作。EROC 有一个应急发电机。一旦电话线和 NMCI 连接经过测试并且工作人员准备就绪,NAS Jacksonville 的电话将被转接到电话号码 (850) 452-5294。留在 NAS Jacksonville 的人员将按照命令准备撤离。一旦紧急情况平息并且 RCC 人员被召回,RCC 将在 NAS Jacksonville 103 号楼重新开放。一旦有足够的工作人员返回工作岗位,RCC 将取消电话转接。在彭萨科拉海军航空站工作的人员将尽快返回 NAS Jacksonville。 RCC 还拥有基于每个隔间内连接的 DSN 电话的主动循环电话电路。这将在我们的 Avaya 电话系统服务中断或故障时使用。循环电路将按顺序从一个方块响到下一个方块。
将近2,000种植物,主要是苔藓,莎草,草和开花植物,形成了苔原的植被。物种的多样性从树线到北部的永久性冰盖逐渐减少。由于气候,多年冻土和夏季短,桦树和柳树等树种是地面覆盖物,它们在这个生物群落中水平生长,而不是向上生长。这还有助于植物从冬季的绝缘雪覆盖中受益。苔原植物需要在有限的时间和阳光允许的时间内快速生长。这使短暂的夏季非常丰富多彩;此时,许多令人惊叹的开花植物,例如矮人的防火道和山地avens,都在开花。随着阳光在北极圈上方的夏季每天24小时闪耀,与南方同行相比,一些北极植物可以在这种间接的光线下生长和发展。居住在苔原上的植物已经适应了短期生长季节,大风,低温,缺乏湿度和低酸性土壤营养水平。它们具有浅根系统,只能在土壤的活跃层或夏季未冷冻的土壤中生长。生长在地面附近,以避开强风,并利用吸收热量的深色土壤和岩石,苔原植物往往会保持短且在土壤上生长,就像紫色的saxifrage,网状叶状的柳树和其他苔原灌木一样。这会捕获单个植物之间的温暖空气并有助于生长。植物保持温暖的另一种方法是让不同的物种挤在一起,或者使一个单个物种以特定的模式(例如玫瑰花塞或厚垫子)生长,例如苔藓campion和三个齿状saxifrage。
背景 高影响天气 (HIW) 事件对社会造成毁灭性影响,造成人员伤亡、基础设施退化和巨大的经济影响。从气象角度来看,强降水事件、破坏性雷暴和强风是影响最大的事件,具有各种严重的间接影响,例如洪水、山体滑坡和海洋淹没。HIW 事件很少见,位于天气事件气候分布的尾部。尽管法国气象局等气象服务在过去几十年中在预测天气方面取得了重大进展,但准确预测 HIW 的发生、强度、位置和时间仍然具有挑战性。目前,实际天气预报依赖于基于物理的建模方法,数值天气预报 (NWP) 模型每天都在运行,以确定未来的大气状态和 HIW 风险。具体而言,集合预报系统 (EPS) 旨在对未来大气状态的概率分布进行采样。它们包括运行多个 NWP 预报,以解释不同的不确定性来源。在法国气象局,运行 16 个扰动预报、空间分辨率为 1.3 公里的扰动预报的 AROME-EPS 用于预测 HIW 的风险。但是,正确捕获相关的不确定性需要非常高分辨率(几百米)的大型(几百个成员)集合。尽管如此,由于相关的计算成本,这种增强系统目前不适用于运行 NWP。在此背景下,POESY 项目的主要目标是探索创新混合 EPS 设计的科学可行性和相关性,将标准物理建模与计算效率高的人工智能 (AI) 技术相结合,以便对高影响天气产生破坏性概率预报。