黄杨木被用作各个领域的原材料来源,并以其生态特性为大自然做出了巨大贡献,它正由于害虫而灭绝,主要是由于虫蛾(Cydalima Perspectalis),不受控制的切割,真菌干燥和疾病。除此之外,气候变化还对生物多样性和许多物种的分布起负面作用。因此,需要采取必要的措施来最大程度地减少气候变化对物种的影响。在这项研究中,使用了借助现场研究和文献获得的45个黄杨木位置的信息。通过现场研究观察到在这些位置的Cydalima Perspectalis的存在。数据获取后,黄杨木的当前潜在分布区(Buxus spp。)及其害虫,即自然散布在Türkiye的黄杨幼蛾(Cydalima Perspectalis),是使用Maxent 3.4.4程序和从Google Earth Engine(GEE)平台获得的WorldClim V1数据库进行了建模的。根据建模结果,预计害虫将主要在黑海地区和西马马拉地区和黄杨木(Buxus spp。)有望在爱琴海和地中海地区传播。还观察到,当前位置在很大程度上与潜在的分布区域重叠。
1.整体性能 (1)须符合无线电法及相关法规的要求。 (2)必须遵守《禁止非法访问法》及其他相关法律法规。 (3) 必须能够使用固定支架在设施等或车辆上安装和使用该装置。 (4)安装在设施上时,必须能够不断监控各个方向半径2公里范围内的区域,安装在车辆上时,必须能够不断监控各个方向半径1.5公里范围内的区域。 (5)必须能够同时探测、识别和跟踪多架小型无人机,并在地图屏幕上连续显示和记录这些功能。 (6)必须能够通过警报通知小型无人机的入侵,并通过干扰无线电波的方式防止已识别的小型无人机的入侵。 (7)必须能够探测小型无人机飞行员的位置或起飞点。 (8)必须能由一个人操作。 (9)主机、天线及显示/操作终端必须安装在车辆上,并能使用车辆电池作为电源进行操作。 (10)该设备必须能够由一个人在 10 分钟或更短的时间内安装完成,并且不需要对车辆进行任何改装。此外,它不得影响车辆的载客量,并且必须能够轻松地将乘客转移到其他车辆。 (11)必须可以随意删除内置数据。 (12)部件必须能够存放在随附的储存箱中,并方便一个人携带。 2. 主机 (1)接收频带:10 MHz 至 6 GHz (2)发射频带:700 MHz 至 6 GHz (3)频率带宽:160 MHz 以内 (4)发射功率:最大 20 W 或更低 (5)输入功率:交流 100 V 和直流 24 V (6)功耗:最大 36 W 或更低 (7)必须具有双接收通道和双发射通道。 (8)工作温度:-20℃~+50℃。 (9)防尘、防滴性能相当于IP53(JIS C 0920)或更高,雨天也能使用。 (连接天线时) 3 天线 (1) 必须能够连接到主机。 (2)工作温度:-20℃~+50℃。 (3)具有相当于IP53(JIS C 0920)或更高的防尘、防滴性能,雨天也能使用。 (连接天线时) 4.显示及操作终端 (1)应能显示小型无人机的飞行轨迹。 (2)该设备必须能够在地图屏幕上显示其当前位置。 (3)必须能显示兼容小型无人机列表,以及小型无人机的制造商名称、型号名称、起飞点、当前位置、高度、距当前位置的方向、距离信息。 (4)形状必须是智能手机类型、平板电脑类型或笔记本电脑类型。 (5)屏幕尺寸须为5英寸或更大。 (6)具有相当于IP65(JIS C 0920)或更高级别的防尘、防滴性能,并在雨天也能使用。 (7)操作系统须为Android 9.0或更高版本或Windows 10或更高版本。 (8)工作温度:0℃至+35℃
来自军官室:我们上次会议开始时听到的消息是,船友保罗·莱克 (Paul Lake) 已离开,开始执行永恒巡逻任务。保罗突发严重心脏病,所有人都会想念他。正是由于保罗的努力,我们现在才能在当前位置开会。我们正在寻找新的 COB。船友吉姆·尼尔森 (Jim Nelson) 不得不辞职。我们的宪法和细则中规定的 COB 职责是:“基地船长应负责确保有足够的会议场所供 Perch 基地定期开会。他还应安排必要的设备,并确保这些设备到位,以便举行此类会议。”如果您觉得您想帮助基地并站出来承担这一重要职位的责任,请联系任何军官室,您的愿望将被告知。说到寻找志愿者,我们正在寻找一些船友来站出来接管通讯。雷·萨姆森 (Ray Samson) 为基地所做的一切都让他忙得不可开交,他正在寻找一些替补。我们越能分散工作量,所有参与者就越轻松,而且参与其中仍然很有趣。我们计划在 4 月 20 日 1 小时举行一次野餐,这将是我们 4 月份的会议。移至第三个周末的原因是因为第 8 区会议将在
术语表 机场移动地图显示器 一种软件应用程序,显示机场地图并使用导航源在地面上显示飞机当前位置。 消费设备 主要用于非航空用途的电子设备。 受控便携式电子设备 受控 PED 是指受使用它的操作员管理控制的 PED。这将包括但不限于跟踪设备在特定飞机或人员的分配情况,并确保不会对硬件、软件或数据库进行未经授权的更改。 EFB 系统的数据连接 EFB 系统的数据连接支持 EFB 与其他飞机系统(如航空电子设备)之间的单向或双向数据通信。本定义不涵盖 EFB 之间的直接互连或 EFB 与地面系统之间的直接连接,如 T-PED(如 GSM、蓝牙)。 电子飞行包 一种供驾驶舱机组人员使用的信息系统,允许存储、更新、传送、显示和/或计算数字数据,以支持飞行操作或职责。 EFB 管理员 EFB 管理员是运营商任命的人员,负责公司内部 EFB 系统的管理。EFB 管理员是运营商与 EFB 系统和软件供应商之间的主要纽带。EFB 主机平台 在考虑 EFB 系统时,EFB 主机平台是设备(即硬盘
构建一个能够满足商业航空所需安全标准的防撞系统具有挑战性。林肯实验室与其他组织合作,花了几十年时间开发和完善目前使用的系统 [1]。创建一个强大的系统很困难,原因有几个。系统可用的传感器不完善且噪声大,导致所涉及飞机的当前位置和速度不确定。飞行员行为和飞机动力学的多变性使得很难预测飞机未来的位置。此外,该系统必须平衡多个相互竞争的目标,包括安全和操作考虑。在过去的几年里,林肯实验室一直在开发先进的算法技术来应对这些防撞的主要挑战。这些技术依靠概率模型来表示各种不确定性来源,并依靠基于计算机的优化来获得最佳的防撞系统。使用记录的雷达数据进行的模拟研究证实,这种方法可以显著提高安全性和操作性能 [2]。美国联邦航空管理局 (FAA) 已组建一个组织团队来完善该系统,该系统现已被称为机载防撞系统 X (ACAS X)。2013 年令人满意的概念验证飞行测试将加强使 ACAS X 成为下一个防撞国际标准的目标。
•更新要求课程内容领域,以与当前的美国心理协会(APA)标准更加一致,并纠正最低信用小时要求; •允许在授予博士学位之前完成的所有研究生级课程,以满足所需的课程内容领域; •将心理临床科学认证系统(PCSA)添加为认可的教育认证机构; •阐明两种居住道路,以及哪些有资格为居住时间; •减少为代替全日制学术居留所需的教育会议时间; •减少直接联系小时和个人监督的最低要求; •减少申请人重新进行全国考试的等待期,并要求申请人接受第三次或随后的重新审查,以将行动计划提交董事会; •更新该规则以包括在其他司法管辖区凭证的所有当前许可途径。该规则继续根据WSR 24-14-079,董事会于2024年6月28日通过董事会通过,然后修改并于2024年10月25日根据WSR 24-22-015进行。此规则包通过一项修正案继续以前的紧急规则,从WAC 246-924-053(2)(a)中删除了“面对面”一词,以与董事会在TeleSupervision上的当前位置保持一致。这些紧急规则将在2024年5月2日提交的WSR 24-11-005下进行的永久规则进行。引用该命令影响的规则:
工作原理 5.1. GPS 数据采集 NEO-6M GPS 模块持续接收卫星信号并计算车辆的经纬度坐标。ESP32 微控制器通过串行连接从 GPS 模块读取这些坐标。 5.2. 地理围栏设置 您可以使用用户界面设置地理围栏 - 即某个地理区域周围的虚拟边界,该用户界面具有用于激活地理围栏功能的样式按钮。设置地理围栏后,浏览器中会显示警报通知您配置成功。 5.3. 实时跟踪和地理围栏监控 ESP32 实时监控车辆当前的 GPS 坐标。它通过将当前位置与地理围栏的预定义边界进行比较来检查车辆是否在地理围栏区域内 5.4. 警报系统 如果车辆越过地理围栏边界,ESP32 会检测到此事件并触发警报并显示在浏览器中,通知您地理围栏已被突破。此警报可以采用视觉通知的形式,例如弹出消息或控制台日志。 5.5. 用户界面 Web 界面允许与系统交互,包括设置地理围栏和接收警报。 ESP32 可以充当 Web 服务器,提供一个可从浏览器访问的页面,您可以在其中实时设置和监控地理围栏状态。
1.1 基本信息 它是如何工作的?新兴救生技术 ELT406GPS 是一款独立的紧急定位发射器,它将新标准数字 406.037 Mhz 无线电遇险信标与 GPS 生成的纬度/经度位置数据相结合。信号由 Cospas/Sarsat 卫星搜索和救援 (SAR) 系统接收。在飞行过程中,GPS 装置每 15 秒自动更新一次您的当前位置。激活后,每 50 秒向全球卫星系统发出一次 5 瓦信号。25 米* 范围内的您的位置将传送给搜索和救援人员。* 注意:目前 Cospas Sarsat 系统仅以 4 秒为增量接收纬度/经度。这相当于赤道上的 300 英尺。谁在控制?国际 Cospas-Sarsat 计划提供准确、及时和可靠的遇险警报和位置数据,以帮助搜救机构协助遇险人员。COSPAS (КОСПАС) 是俄语单词“Cosmicheskaya Sistema Poiska Avariynyh Sudov”(Космическая Система Поиска Аварийных Судов) 的首字母缩写,翻译为“用于搜寻遇险船只的空间系统”。SARSAT 是搜索和救援卫星辅助跟踪的首字母缩写。SARSAT 系统由美国、加拿大和法国联合开发。在美国,SARSAT 系统由美国商务部下属的国家海洋和大气管理局 (NOAA) 负责管理。欲了解更多信息,请访问:http://www.cospas-sarsat.org
● 吹口哨:吹口哨是一种强大的技能,可以分散敌人的注意力,并将其引诱出来。该技能的关键部分是敌人的瞄准,为此我们使用了玩家驱动的屏幕空间瞄准。我们使用了计分函数来选择靠近玩家且靠近屏幕中心的 NPC。同样重要的是,要对我们正在引诱敌人的群体中的其余 NPC 做出适当的反应(Ocio 18)。● 巫毒娃娃:这种消耗品在被扔到地上时会开始发出声音事件。敌人会对此事件做出反应,走近并调查声音的来源。当敌人在附近时,巫毒娃娃会爆炸。● 暗杀小队:这是一组由四名盟友组成的小队,在战斗中帮助玩家。它本身并不是隐身干扰,但也不会破坏玩家的隐身状态。当友方 AI 小组开始杀死敌人时,玩家仍然可以潜行。敌人知道暗杀小队,但仍然不知道玩家。暗杀小队成员利用感官探测敌人,并相互分享对敌人的了解。由于他们需要能够帮助玩家,因此他们还会自动了解玩家检测到的所有敌人,玩家正在运行使用 360 度视野的简化版识别系统。小队协调是通过位置选择系统实现的。当小队的一名成员寻找一个好位置时,系统会知道所有小队成员的当前位置以及他们的目标位置。这样,我们就可以控制他们彼此之间的距离。
在雷达应用中,轨道维护是该过程的一个重要组成部分。从数学上讲,它可以归结为一个滤波问题,即必须从嘈杂的位置测量中滤除飞机的当前位置、速度以及可能的高阶导数。我们将此问题简称为“目标跟踪”。当飞机机动时,由于运动的不可预测性,该问题很难解决。在过去的四十年中,这一领域一直是广泛研究的对象,参见 [1]。跟踪的主要自由度是 1- 描述目标运动的动力学模型,以及 2- 使用的(统计)滤波器。对于动力学模型,有很多可能性,但线性模型通常用于工业应用,最著名的是 Singer 模型 [2]。对于滤波器,一种简单的稳健解决方案是 Castella 的噪声过程自适应卡尔曼滤波器 [3]。更现代的方法包括粒子滤波器 [4] 和用于跟踪的参考滤波器,即交互多模型 (IMM) 滤波器,参见 [1]。后者滤波器基于各种模型并行运行 (扩展) 卡尔曼滤波器组,并通过评估测量输出的可能性来评估每个模型的权重。这可以适应单个雷达可能面临的各种类型的目标和机动性程度。学术界现在主要转向多目标跟踪的挑战,并在视频中进行联合应用,参见 [5]。如今,雷达防空行业面临着新的挑战,目标的机动性越来越强。一些目标的速度可以达到 7 马赫,加速度为 15 g。通过运动模型注入一些结构的方法