基于多模态大型语言模型 (LLM) 的抽象 AI 代理有望彻底改变人机交互,并在医疗保健、教育、制造和娱乐等各个领域提供更加个性化的助理服务。在 6G 网络中部署 LLM 代理使用户能够通过移动设备民主地访问以前昂贵的 AI 助理服务,从而减少交互延迟并更好地保护用户隐私。然而,移动设备的有限容量限制了部署和执行本地 LLM 的有效性,这需要在长距离交互期间将复杂任务卸载到边缘服务器上运行的全局 LLM。在本文中,我们为 6G 网络中的 LLM 代理提出了一种分割学习系统,利用移动设备和边缘服务器之间的协作,其中具有不同角色的多个 LLM 分布在移动设备和边缘服务器上,以协作执行用户代理交互任务。在所提出的系统中,LLM 代理分为感知、接地和对齐模块,以促进模块间通信,以满足用户对 6G 网络功能的扩展要求,包括集成传感和通信、数字孪生和面向任务的通信。此外,我们在所提出的系统中引入了一种用于 LLM 的新型模型缓存算法,以提高上下文中的模型利用率,从而降低协作移动和边缘 LLM 代理的网络成本。
DNA topoisomerase I acts as supercoiling sensor for transcription elongation in E. coli Authors: Vita Vidmar 1,2,3,4,# , Céline Borde 5,# , Lisa Bruno 5 , Maria Takacs 1,2,3,4 , Claire Batisse 1,2,3,4 , Charlotte Saint-André 1,2,3,4 , Chengjin Zhu 1,2,3,4,OlivierEspéli5,ValérieLamour1,2,3,4,*和Albert Weixlbaumer 1,2,3,4,*摘要:当DNA转录为RNA时,DNA Double Helix会不断解开,并为RNA Polymerase(RNAP)提供访问权限(RNAP)。由于RNAP的下游和上游的DNA过度和扭转,这将诱导DNA超螺旋作为转录长度的函数。使用单粒子冷冻EM和体内测定法,我们研究了细菌RNAP和DNA拓扑异构酶I(topoi)之间的关系,该酶消除了RNAP上游积累的负超高。topoi与RNAP的放松DNA上游结合,表明具有感官作用,等待负超级锅的形成,并涉及托皮伊(Topoi)功能域中的构象转换。在DNA底物上模仿了否定超螺旋的DNA,topoi螺纹将一条线束进入活跃位点进行裂解,同时将互补链与辅助结构域结合。,我们在转录RNAP的背景下提出了一个用于DNA松弛的综合模型。1综合结构生物学系,Institut degénétiqueet de BiologieMoléculaireet Cellulaire(IGBMC)2UniversitédeStrasbourg
默西亚大学默西亚大学的信息与通信工程系,西班牙默西亚30100 B通信系统集团CSG,信息学系IFI,苏黎世大学,苏黎世大学,CH – 8050 Z-瑞士,瑞士
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
“我们当中谁”不介意被拒绝?感受到社会排斥或排斥是痛苦和令人难过的,特别是当这种排斥来自我们所依赖的人时。在最新一期的《生物精神病学:认知神经科学和神经影像学》中,Fertuck 等人 (1) 认为社会排斥的心理意义可以在马斯洛需求层次理论 (2) 的更广泛背景中得到定位。这一持久的心理模型提出了激发人类一系列行为的四种基本社会需求:归属感、自尊、控制力和有意义的存在。社会排斥被视为对这些需求的直接威胁,常常导致被拒绝痛苦的主观体验。适度的情况下,这种痛苦可以被认为是适应性的,因为它向那些重要的人发出信号,表明社会纽带需要确认或修复。事实上,在大多数高度社会化的哺乳动物中,很容易观察到社会纽带破裂后公然表达痛苦和采取行为后果[狗爱好者见(3)]。然而,如下文所述,当人类以不稳定的方式经历这种反应时,可能会引发相当多的危险行为,这些行为可能难以预测,甚至更难以缓解,这是我们作为临床医生最关心的问题之一。在现代认知神经科学中,我们已经了解到,对社会排斥的反应与大脑敏感地检测到事情不对劲,我们从环境中获得的东西与我们的目标不符有关。因此,当我们犯错、期望被违背或感到躯体疼痛时,内侧额叶皮质中与社会排斥相关的区域会亮起来(功能性磁共振成像显示)(4、5)。幸运的是,大多数时候(当然不是总是),刹车会自动踩下;大脑的稳态倾向开始发挥作用,让我们默念“我能处理这个”,我们(或我们的观察者)将其体验为情绪调节。不幸的是,对一些人来说,被拒绝的经历会产生不稳定、混乱的效果,这会给我们自己和周围的人带来麻烦。如果与拒绝相关的麻烦是一个人心理功能的常见特征,那么这个人可能会被精神病学诊断为边缘性人格障碍 (BPD)。正如 Fertuck 等人 (1) 指出的那样,对于 BPD 患者,这通常会导致高风险的冲动和行为,包括自残、自杀未遂和自杀成功 (7)。这些对拒绝的反应是 BPD 的标志,就像任何其他临床特征一样,但我们对大脑中如何发生这种情况却只有一个模糊的概念。
引言尽管在诊断和治疗方面取得了重大进展,心血管疾病 (CVD) 仍然是全世界发病和死亡的最常见原因,约占每年死亡人数的三分之一。1 2 早期和准确诊断是改善 CVD 结果的关键。其中的核心问题可以通过定期筛查来解决。尽管目前的筛查计划对于小众疾病来说成本低效,但人工智能 (AI) 无疑打破了我们目前心血管健康监测工具的功能规则;从使用心电图检测左心室收缩功能障碍,到以高于乳房 X 线摄影的准确度进行心血管风险预测。3 在本文中,我们希望简要介绍该领域的最新进展,以及人工智能如何不仅带来新技术的诞生,而且还扩展我们可用的现有工具的功能。
摘要:在双层石墨烯 (BLG) 中打开带隙对于石墨烯基电子和光子器件的潜在应用具有重要意义。本文,我们报告了通过在 BLG 和 Ru 衬底之间插入硅烯在 BLG 中产生相当大的带隙。我们首先在 Ru(0001) 上生长高质量的 Bernal 堆叠 BLG,然后将硅烯插入 BLG 和 Ru 之间的界面,这通过低能电子衍射和扫描隧道显微镜得到证实。拉曼光谱显示,插入的 BLG 的 G 和 2D 峰恢复到独立 BLG 特征。角分辨光电子能谱测量表明,BLG 中打开了约 0.2 eV 的带隙。密度泛函理论计算表明,大带隙打开是 BLG 中掺杂和波纹/应变共同作用的结果。这项工作为 BLG 中带隙打开的机制提供了深刻的理解,并增强了基于石墨烯的器件开发的潜力。关键词:双层石墨烯、带隙、协同机制、插层、硅烯 ■ 介绍
《学生英语语法指南》第一版共一千册,是几年前应要求出版的;是大西洋彼岸的机械学院和其他公共集会上发表演讲的成果。经明确许可,该书献给已故的萨德比尔牧师博士,MRIA,他多年来一直担任都柏林圣三一学院的教务长,也是爱尔兰“国家教育”的委员之一。
鱼雷和水雷 1941 年 12 月 22 日,战时内阁会议决定在澳大利亚制造鱼雷,这项决定使该国的精密工程领域承担了一项极其艰巨的任务;由于鱼雷在现代军备中占据重要地位,这项任务具有极其重要的潜在意义。海权是英国在 19 世纪称霸世界强国的基石,因此鱼雷的研发本质上是英国的成就也就不足为奇了,尽管它最初并不是英国的发明。英国在鱼雷应用方面早期的领先地位很大程度上归功于指挥官(后来的海军上将)费舍尔的热情,但其他大国不久也进入了该领域。这种武器的巨大潜力首次显现于 1914 年至 1918 年的战争中,当时德国利用 U 型潜艇和鱼雷对商船造成了巨大损失,几乎让英国屈服。第一次世界大战后的二十年间,随着飞机投掷鱼雷方法的发展,鱼雷的破坏力进一步增强,不需要太多洞察力就能预测鱼雷在未来战争中的作用。2 英国的鱼雷制造主要由一家私人公司怀特黑德鱼雷公司(Whitehead Torpedo Company)和位于苏格兰格里诺克的海军部负责。 1941 年 7 月,海军部担心英国的鱼雷生产可能会因轰炸或入侵而受阻,甚至完全停止,因此开始研究为这种紧急情况提供替代中心的方法。英国的制造业已尽可能分散,但尚未在英国以外建立中心。1941 年 7 月 15 日,海军部在给澳大利亚海军委员会的一封信中表示:“如果鱼雷制造商能够在英国制造鱼雷,那将是一个相当大的优势。”