摘要 热能储存是节约能源和优化整体效率的重要因素。开发本地能源储存系统需要一些有关原材料的信息,而原材料在当地市场上供应充足。本研究旨在调查亚齐传统生产的盐的特性,以了解其作为热能储存原材料的潜在用途。样品取自亚齐大区,在马弗炉中以 400°C 和 800°C 的温度加热处理。进行这种处理是为了研究性质的变化并确定盐制备的最佳程序。所有样品都经过多种技术表征,包括 XRF、XRD、SEM/EDS、TGA/DSC 分析、密度、热导率和电解电导率。XRF 表征表明,当地的亚齐盐被评为 III 类盐。此外,根据 TGA/DSC 表征,熔化温度接近 800°C,焓值接近 492 kJ/kg。亚齐盐可作为热能储存材料的证据已经足够,此外,提高亚齐盐的热处理温度有助于提高其焓值、晶体尺寸、密度、热导率和电解质电导率。
当吸湿盐(MgSO4,xH2O)分布在具有足够的层次化孔隙率的氧化锆陶瓷基质中时,其用于热化学储能的性能可以大大提高。基质材料采用增材制造技术(robocasting)与造孔剂添加和部分烧结相结合的方式制造,以获得三级孔隙率(孔径分布在 3 个十年内,从 200 纳米到 200 微米)。然后通过用水性盐溶液渗透基质材料来获得复合材料。孔隙率使基质材料中储存的盐量及其与水蒸气的可及性最大化,从而产生潜在的高能量密度(高达 420 kWh·m -3 ),而不会在水合/脱水循环中损失效率。
我们报告了一项系统的研究,该系统研究盐浓度及其阳离子价对模型的混合物的多种等分和转运性能,其混合物具有单价(Lino 3)的硝酸盐(lino 3),二价(mg(no 3)2和Ca(no 3)2和Ca(no 3)2)和(no 3)3)salts。由适当的实验技术确定的这些特性包括密度,声速,折射率,表面张力,电导率和粘度。单粒子动力学和径向分布函数也通过分子动力学模拟进行了分析。在Vogel-Fulcher-Tammann框架中研究了电导率的温度依赖性,我们获得了有效的激活能量,脆弱性指数和Vogel温度。此外,我们进行了高温Arrhenius分析,并计算了电导率和粘度的激活能。最后,获得了不同混合物的分数Walden规则的指数,并分析了系统的离子和脆弱性,证明所有混合物都是亚离子和脆弱的。在其第一个溶剂化壳中建立的由添加盐的阳离子和硝酸盐阴离子组成的长寿命阴离子聚集体的氢键网络的变形以及长寿命的阴离子聚集体的形成是对分析特性产生的深影响。细节分析了盐阳离子的表面电荷密度对溶液的结构和运输特性的作用,并与离子液体极性纳米孔(纳米结构溶剂化)中盐物质的溶剂化有关。2022作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
注意:这是作者的作品版本,该作品被接受在《电力杂志》中发表。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本:J。Power Sounce 196(2011)8696-8700。doi:10.1016/j.jpowsour.2011.06.0333
EPA的推荐第304(a)条标准为各州和授权部落提供了技术信息,以考虑和使用水质标准,最终为评估水体健康和控制污染物的排放提供了基础,并将其用于美国水域。根据CWA及其实施法规,国家和授权部落必须采用水质标准来保护水的指定用途(例如,公共供水,水供应,水生寿命,娱乐用途,工业用途)。EPA建议的水质标准不能代替CWA或法规,也不代替法规本身。因此,EPA的建议标准不会建立合法权利或义务或施加法律约束力的要求,也不是最终的代理行动。国家和授权部落在适当的情况下可能会采用与这些建议不同的其他可辩护的水质标准。epa的水质标准规定在40 CFR 131.20(a)要求国家和授权部落考虑任何新的或更新的国家第304(a)条建议的标准作为三年期审查过程的一部分,并且,如果国家或授权部落不采用新的或对这些参数进行探索的新标准或提出新的标准,则在此期间提出了新的或审查的情况。到EPA。此要求是确保州或部落水质标准反映当前的科学并保护适用的指定用途。
我们首次使用具有内置表面活性的胺作为碳含量捕获和原位转换为碳酸氢盐作为碳含量。表面活性胺为3-(二甲基氨基)丙胺(DMAPA),用氧化丙烷(PO)组(DMAPA-XPO,X = 4、6、8、12)修饰。对CO 2的分析捕获了13 C核磁共振(NMR)光谱的捕获能力数据,确定了碳酸氢盐浓度的TRACES和CO 2捕获过程中PO组影响的生成机制,建立了CO 2溶解度,溶液的pH和固定效应之间的关系。结果证明了具有最佳PO水平(DMAPA-6PO)内置表面活动的有效性。DMAPA-6PO在环境条件下,与DMAPA相比,碳酸氢盐生成54%。
摘要:聚β-羟基丁酸酯(PHB)是由盐单胞菌等细菌产生的一种代谢产物,在营养受限条件下可作为细菌的碳源和能量储存化合物。开展两个试验研究了饲料中添加盐单胞菌-PHB对杂交石斑鱼(Epinephelus fuscoguttatus♀×E.lanceolatu♂)的影响。试验一,给幼鱼石斑鱼饲喂在基础饲料中添加3%盐单胞菌-PHB(3%HM-PHB)(含1.4%PHB)和3%盐单胞菌(3%HM)(不含PHB)以及对照饲料,连续7周。结果显示,3%HM-PHB组与对照组的存活率、增重和粗脂肪含量无显著差异,但3%HM-PHB组的粗蛋白显著低于对照组。此外,添加 3% HM-PHB 可增加鱼肌肉中的脂肪酸含量,包括长链不饱和脂肪酸 C18:1n9、EPA 和 DHA。在实验 II 中,石斑鱼喂食基础饲料,其中添加了 6.5% 盐单胞菌 -PHB(6.5% HM-PHB)(含 3% PHB)和 6.5% 盐单胞菌(6.5% HM)(不含 PHB),以及基础饲料(对照)。饲养七周后,用鳗弧菌对石斑鱼进行 48 小时的诱变。虽然不同组间存活率和生长情况无显著差异,但饲料中添加6.5% Halomonas -PHB可提高受到鳗弧菌攻击的石斑鱼的存活率,并显著增加血液中过氧化氢酶( CAT )和超氧化物歧化酶( SOD )基因表达,肝脏、脾脏、头肾和血液中白细胞介素1( IL1 )和白细胞介素10( IL10 )的表达( p < 0.05)。综上所述,饲料中添加Halomonas -PHB对鱼的生长性能无显著的积极影响,但增加了鱼肌肉中脂肪酸,包括长链不饱和脂肪酸C18:1n9、EPA和DHA的含量,并提高了对鳗弧菌的抗性,可能是通过增加不同组织器官中免疫相关基因的表达来实现的。我们的研究结果提供了令人信服的证据,表明 Halomonas -PHB 可用作集约化石斑鱼养殖的饲料添加剂,以增强石斑鱼对弧菌的抵抗力。
摘要。熔融盐是使用MS功率塔和“直接”存储或使用带有MS“间接”存储的抛物线槽的CSP植物中存储热能的首选选择,使用热油作为太阳能场中的传热油。自2000年以来,已经提出并研究了在线性抛物线槽中使用“直接”储存的传热液。从2001年开始,ENEA在其“太阳热力学”项目中充分发展了这种概念。这样的努力导致建造全尺寸100 m。 2003年的测试工厂在ENEA测试领域,并于2010年由意大利公用事业ENEL(ACHIMEDE)授予5 MW的单位。随着线性菲涅尔技术变得更加成熟,也开始研究这种类型的太阳能收集器,以采用熔融盐作为HTF。意大利公司Sol.in.par专门从事可再生能源工厂,最近决定采用带有熔融盐的菲涅尔技术作为传热液和储存培养基,用于在Partanna(Sicily)开发新的发电厂(SICILY),其中包括5.6 MW e Photovoltaic section和4.26 MW E CSSP部分。由于实际上没有这种类型的植物,因此这种植物将是这种概念的第一个。本文描述了目前在施工阶段的设计和操作主要数据,预计将不晚于2020年春季。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:盐霉素 ( 1 ) 具有广泛的生物活性,包括选择性清除癌症干细胞 (CSC) 的能力,这使得它及其衍生物成为开发抗 CSC 药物的有希望的候选药物。我们之前已表明盐霉素及其 C20-炔丙基胺衍生物(铁霉素,2 )在溶酶体中积累并隔离该细胞器中的铁。我们在此报告了一个盐霉素衍生物库,包括 C20-胺化、C1-酯化、C9-氧化和 C28-脱水的产物。我们评估了这些化合物对转化的人乳腺上皮 HMLER CD24 low /CD44 high 细胞(一种完善的乳腺 CSC 模型)和缺乏 CSC 特性的 HMLER CD24 high /CD44 low 细胞的生物活性。与其他结构改变不同,衍生物 4 在 C20 位置显示环丙胺,对 HMLER CD24 低 /CD44 高细胞的 IC 50 值非常低,仅为 23 nM。这项研究提供了针对 CSC 微环境的高度选择性分子,这对于预防癌症耐药性的药物开发来说是一个潜在的有趣进展。