经典力学在时间反演下是不变的:它的基本定律不区分过去和未来。观察到的时间箭头是一种宏观现象,它取决于宏观变量的使用以及这些变量定义的熵在过去较低的偶然事实。量子力学也是这样吗?一方面,薛定谔方程是时间反演不变的,量子场论也是如此(直到宇称变换和电荷共轭)。基本物理学是时间反演不变的,时间取向的来源又是宏观和熵的。基本量子现象不带有首选的时间箭头。然而,另一方面,量子理论的形式主义通常以明显的时间取向来定义。在这里,我们解决了物理学和形式主义之间的这种紧张关系。我们研究了量子形式主义的时间取向的原因,并表明这种紧张关系是可以解决的。形式主义的不对称性是由于
量子信息概念诞生于量子力学与信息论科学的交叉学科。前者的惊人成功使人们认为信息概念离不开量子形式主义的数学结构,而量子形式主义对物理定律的形式施加了根本性的约束。早在 20 世纪 30 年代,冯·诺依曼就将量子态的熵 [1] 定义为经典玻尔兹曼-吉布斯熵的类似物,后来发现后者是香农熵 [2] 的量子对应物——经典通信理论的基础概念。大约在同一时间,爱因斯坦·波多尔斯基和罗森指出了量子形式主义的不同寻常的特征,这似乎可以得出结论:量子力学是不完备的 [3]。1970 年,两位年轻物理学家——华盛顿州立大学物理系的帕克 [4] 和纽约哥伦比亚大学的威斯纳 [5] 分别独立分析了量子形式主义的物理含义。前者发现了复制量子信息的根本限制,而后者则发现了第一个
生物、生态和社会系统中社会和行为秩序的稳定性在 Fr ¨ ohlich 凝聚态的形式主义中建模。后者是 Bose-Einstein 凝聚态的高温类似物,稳定性是通过将能量密集泵入与浴相互作用的系统来实现的。我们首先回顾考虑非平衡热力学和量子框架的形式主义。虽然 Fr ¨ ohlich 将这种形式主义应用于生物系统和物理能量流(电磁、化学、振动),但他指出了将其应用于更广泛系统的可能性。我们通过将量子建模与生物和社会系统的信息方法相结合来实现这一计划,将它们视为信息处理器并引入社会能量的概念(及其版本,例如社会和行为能量)。这种形式主义适用于现代开放社会中的社会稳定性建模,其特点是强大的信息流和基于互联网的庞大信息库,包括各种社交网络。然后,以狼群为例,将其应用于对群体和群体中一致行为的建模。本文的重点是提取 Fr ¨ ohlich 凝聚的条件,并在纯信息框架中重新表述它们。
为了理解生物在分子水平上的功能,我们需要知道表达哪些基因,何时何地在生物体中以及在哪个程度上。通过DNA,RNA,蛋白质和小分子之间的相互作用网络所结构的遗传调节系统来实现基因表达的调节。由于大多数遗传调节网络涉及通过互锁正面和负反馈回路相关的许多组件,因此很难获得对其染色体的直观理解。因此,对于遗传调节网络进行建模和模拟的形式方法和计算机工具是必不可少的。本文回顾了数学生物学和生物信息学用于描述遗传调节系统的形式主义,特别是有向图,贝叶斯网络,布尔网络及其概括,普通和部分差分方程,定性微分方程,定性差分方程,随机方程以及基于规则的形式主义。在适当的情况下,本文讨论了如何将这些形式主义用于模拟实际监管系统的行为。
这项贡献的主要目标是展示如何在量子信息的语言中重塑许多量子重力形式主义,以及如何在量子量子的结构中,在相同的形式主义中如何看待纠缠或纠缠或量子相关性。即使我们将简要概述的少数结果中,这也不是综述,更不用说对量子重力形式主义中的纠缠和量子信息特征进行的实质性研究。对于后者,我们指的是[1,2],必须限于在量子重力上下文中获得的结果,更接近我们的重点。我们发现采用方便的观点是为了欣赏量子信息理论结构在这些量子重力形式主义中的作用,是新兴的时空,即是量子重力作为“时空成分”的理论,其时空本身,地理位置和领域是新兴实体[3,4,5,6,7]。This perspective is motivated by several results in semiclassical physics, for example black hole thermodynamics and the information paradox, gravitational singularities, that all point in various ways to a breakdown of key notions on which standard continuum, geometric physics is based, and, more indirectly, the results of analogue gravity in condensed matter systems, showing how effective field theory on curved backgrounds can emerge rather generically from non-gravitational系统。这也是由现代量子重力方法的结果,包括我们在这项贡献中关注的方法的动机,并以
形式主义和功能主义的语法对自然语言产生的含义基础和语法自治之间的关系提供了不同的观点。形式主义语法强调了句法成分之间的隐式句法形式关系,并且不考虑这些成分的认知,语义和务实因素。它将语法视为自主和自治的语法,语法的形式约束可以忽略句子的功能含义。Chomsky(1981:1995)通过隐式自我控制的句法形式的规则解释了语言的生产。相比之下,Halliday(1994)是功能主义语法的第一个支持者,它拒绝了形式主义语法中提出的语言产生的单面观点。根据Halliday的说法,语法形式结构是自然语言功能含义的外部符号表示,包括概念,人际关系和文本功能。这种观点断言语言符号的形式和语言函数的含义是整合,不可分割的,并相互反映。
使用包含时空自由度的正交基,我们开发了用于量子光学的 Wigner 函数理论,作为 Moyal 形式主义的扩展。由于时空正交基涵盖所有量子光学状态的完整希尔伯特空间,因此它不需要分解为离散希尔伯特空间的张量积。与此类空间相关的 Wigner 函数成为函数,运算由函数积分(星积的函数版本)表示。由此产生的形式主义使时空自由度和粒子数自由度都相关的场景的计算变得易于处理。为了演示该方法,我们为一些众所周知的状态和算子计算了 Wigner 函数的示例。
这些讲义是信息学和商业硕士学位课程的基础,以及应用科学大学Südwestfalen的Wirtschaftsingenieurwesen(工商管理和工程),校园Hagen。机器学习为术语是炒作。有很多好的文学作品,无休止的许多教科书 - 那么为什么要注意这些讲座?好吧,正是因为有很多好的文学和资源。设计本课程的主要问题之一是以一个学期可以涵盖的方式收集材料。另一个问题是将完全不同的学校和学科的许多方法带入统一的形式主义。后者听起来很简单 - 但事实并非如此。一个关于机器学习的一个学期课程只能提供对广阔领域的首次见解。尽管如此,从一开始就将这个主题传达给学生的目标是目前在商业和科学中至关重要的,并且在将来将变得越来越重要。首先,要实现这一目标,有一些理论要在一定程度上被教导。漫长而乏味的文献研究对于介绍而言无效;该理论应尽可能精确,简洁,但尽可能多地提出。为了提出材料,重点也被放在统一的形式上。魔鬼在这里的详细信息中,毕竟,在数据分析中常用的形式主义中,变量可能与时间序列分析中使用的形式主义完全不同。1因此,这些讲义!作为读者,最后判断它是否成功。
在本文中,我们提出了一种用于在架构中分发纠缠的技术,其中量子对之间的相互作用被限制在固定的网络g上。这允许在GATE传送中彼此远程偏远的Qubits之间执行两倍的操作。我们证明了如何使用将量子线性网络编码编码到Qubits网络中的纠缠分布问题的问题,可以用来解决分布钟状状态和GHz状态的概率,而G中的瓶颈则否则G中的瓶颈会迫使这种纠缠的状态被迫使该状态进行顺序分布。,我们表明,通过减少固定网络g中K问题或多个多播问题的经典网络编码协议,可以用cli的量子电路在发射机和接收器之间分布纠缠,其量子深度的量子深度为某些(通常是小且易于调整)不变,但是依赖于Transmits和Transmits的接收器,并且是遥远的转移器和遥控器。这些结果也直接概括到任何质量尺寸的Qudits。我们使用专门的形式主义证明了我们的结果,与稳定剂形式主义相比,与稳定器形式主义更有效,这很可能有助于推理和原型此类量子线性网络编码电路。