1 印第安纳医学院儿科、解剖学、医学和分子遗传学系 Herman B Wells 儿科研究中心,美国印第安纳州印第安纳波利斯 46202 2 印第安纳大学基因组学和生物信息学中心,美国布卢明顿 3 劳伦斯伯克利国家实验室环境基因组学和系统生物学部,美国加利福尼亚州伯克利 94720 4 加利福尼亚大学比较生物化学项目,美国加利福尼亚州伯克利 94720。 5 美国能源部联合基因组研究所,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利 94720 6 伯尔尼大学生物医学研究系 (DBMR),瑞士伯尔尼 7 伯尔尼大学医院心脏病学系,瑞士伯尔尼
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
Ce´ line Revenu, 1,2,6 Corinne Lebreton, 3,6 Magda Cannata Serio, 4,6 Marion Rosello, 1,2 Re´ mi Duclaux-Loras, 3 Karine Duroure, 1,2 Ophe´ lie Nicolle, 5 Fanny Eggeler, 2 Marie-The´ re` se Prospe´ ri, 4 Julie Stoufflet, 1 Juliette Vougny, 1 Priscilla Le´ pine, 4 Gre´ goire Michaux, 5 Nadine Cerf-Bensussan, 3 Evelyne Coudrier, 4 Franck Perez, 4 Marianna Parlato, 3,7, * 和 Filippo Del Bene 1,2,7,8, * 1 居里研究所,PSL 研究大学,INSERM U934,CNRS UMR3215,75248 Paris Cedex,法国 2索邦大学、法国国家健康与医学研究院、法国国家科学研究院、视觉研究所,75012 巴黎,法国 3 法国国家健康与医学研究院、UMR1163、肠道免疫实验室和想象研究所,75015 巴黎,法国 4 居里研究所、巴黎圣日耳曼研究大学、法国国家科学研究院、UMR 144 巴黎,法国 5 雷恩大学、法国国家科学研究院、IGDR(雷恩遗传与发展研究所),UMR 6290,35000 雷恩,法国 6 这些作者贡献相同 7 这些作者贡献相同 8 主要联系人 *通信地址:marianna.parlato@inserm.fr (MP)、filippo.del-bene@inserm.fr (FDB) https://doi.org/10.1016/j.celrep.2024.114941
我们提出了一些目前未使用的形态发生机制,从进化生物学和转移到进化机器人技术的指南中。(1)提供可突变性突变的DNA模式,通过亲属选择导致可转化的Bauplans的引导。(2)形态发生机制(I)表观遗传细胞系提供功能性细胞类型,并鉴定细胞下降。(ii)基于形态剂扩散的局部解剖坐标,促进了对机械力的复杂表型(III)重塑的可转化遗传参数化(III),促进了比基因组更复杂的良好整合表型的强劲产生。提出了一种方法,用于在进化机器人技术中处理突变性和形态发生机制。这些方法的目的是促进动物肌肉骨骼和皮肤系统的微妙,效率和效率的机器人机制的产生。
摘要:由于它们在控制培养条件下对培养条件的卓越控制并与体内模型相比,由于它们在控制培养条件下的卓越控制并实现了实时观察,因此体外微血管模型的最新出现增强了组织工程中血管生成和血管形成的研究。然而,常规的二维(2D)观察和分析无法捕获三维(3D)形态动力学的异质性。为了克服这个问题,在本文中提出了一种新型的形态登记方法,用于通过将工程微血管的共聚焦显微镜与计算机视觉技术相结合,用于血管生成变形动力学的时空定量。使用微血管和周细胞的共培养系统,时空测量结果揭示了:(i)亲本血管和血管生成芽的不同变形模式以及生长/回归分区; (ii)周期定位和覆盖范围的时空变化; (iii)周细胞微使接触接触对局部缺口信号激活的增强作用,基质金属蛋白酶-1(MMP-1)的分布,血管生成动力学的异质性和形态成熟。该试验系统在血管生成过程中提供了共培养细胞的综合作用的特征,并在未来的有关血管形态发生的研究中实现了多模式数据的互动融合。
源于遗传和生物力学因素之间的动态相互作用所产生的发展复杂性,使基因型和表型在进化中的变化方式变化。作为范式系统,我们探讨了发育因素的变化如何产生典型的牙齿形状过渡。由于牙齿发育主要是在哺乳动物中研究的,因此我们通过研究鲨鱼中牙齿多样性的发展为更广泛的理解做出了贡献。为此,我们建立了一个通用但现实的,数学的数学模型。我们表明,它重现了牙齿发育的关键特征,以及小斑点catsharks scyliorhinus canicula的真实牙齿形状变化。我们通过与体内实验进行比较来验证我们的模型。引人注目的是,我们观察到牙齿形状之间的发育过渡往往是高度退化的,即使对于复杂的表型也是如此。我们还发现,参与牙齿形状转变的发育参数集往往不对称地取决于该过渡的方向。一起,我们的发现为我们对发展变化如何导致自适应表型变化和特质在复杂的,表型高度多样化的结构中的理解提供了宝贵的基础。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.01.20.633825 doi:Biorxiv Preprint
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.01.20.633825 doi:Biorxiv Preprint
属于肿瘤生长因子-β超家族,通过与1型和2型BMP受体结合启动细胞内BMP信号传导(3)。由BMP/BMPR介导的信号转导已被证明参与多种生物过程,例如胚胎发育过程中的自我更新和干性维持(4)。最近,在乳腺癌和胃癌中检测到骨形态发生蛋白受体2(BMPR2)的异常表达,并且已证明BMPR2的异常表达与肿瘤细胞的增殖、分化和迁移有关(5-7)。然而,BMPR2及其调节机制在PDAC中的作用仍然未知。我们的研究通过使用肿瘤微阵列的免疫组织化学(IHC)确定了与正常胰腺组织相比,PDAC肿瘤中的BMPR2过度表达。抑制BMPR2导致胰腺癌(PC)细胞增殖受抑制和G2/M停滞。通过蛋白质组学分析,我们发现GRB2是BMPR2的潜在靶点,其致癌作用在PC细胞中得到进一步证实。生长因子受体结合蛋白2(GRB2)是一种参与细胞存活、增殖等多种细胞功能的衔接蛋白,也是多种致癌信号通路的重要调节因子(8,9)。GRB2的作用已在许多癌症中得到广泛研究,尤其是乳腺癌(10-12)。我们进行了生物信息学分析,以探索GRB2可能参与的潜在分子机制。体外实验表明,BMPR2通过调节生长因子受体结合蛋白2/磷脂酰肌醇3-激酶/蛋白激酶B(GRB2/PI3K/AKT)通路来调节PC细胞增殖。BMPR2抑制剂LDN193189显着抑制BMPR2诱导的GRB2/PI3K/AKT通路的激活。利用原位 PC 和患者来源的异种移植 (PDX) 模型,我们进一步证明了抑制 BMPR2 可通过抑制体内 GRB2/PI3K/AKT 轴来抑制 PC 生长。在此,我们揭示了 BMPR2 在 PDAC 中的致瘤作用,为使用 BMPR2 抑制剂治疗 PDAC 提供了证据。我们根据 ARRIVE 报告清单(可访问 http://dx.doi. org/10.21037/atm-20-2194)撰写了以下文章。
除了一般问题(可能被视为哲学上的一般问题)外,物理主义世界观的异常是灵感的来源。几个知之甚少的现象在“类似po的”过程中发挥了核心作用,导致基于TGD的量子生物学观点的发展。仅提及Elf Emfields对脊椎动物大脑,生物摄影,水记忆,Pollack ectect和comorosan效果的影响。Fantappie的综合概念也挑战了以下信念,即在生命系统中,时间并不总是相同的信念,也令人鼓舞。在本文中,我将讨论基于TGD的愿景和上述现象,这些现象经常被遗忘。i还将将基于TGD的观点与DNA产生的形态发生场的解释进行比较,并意识到在Savelev等人的文章中讨论的遗传代码,并将其与基于TGD的基于TGD的基于TGD模型的遗传代码模型进行了比较。这些文章中描述的发现以及有关水记忆的Yolene Thomas文章中还为基于TGD的视图提供了新的测试。一如既往,这种过程导致了一些新的想法和见解。