哺乳动物肠道是最快的自我更新组织之一,由位于地下室底部的干细胞驱动。paneth细胞构成了利基微环境的主要元素,提供了各种生长因子来编排肠道干细胞稳态,例如Wnt3。不同的wnt配体可以选择性地促成β-catenin - 依赖(规范)或 - 独立(非规范)信号。在这里,我们报告说,形态发生1(DAAM1)及其副狗DAAM2不对称调节规范和非范围WNT(WNT/PCP)信号传导的Di-Shevell相关激活剂。daam1/2与Wnt抑制剂RNF43相互作用,而DAAM1/2双基因敲除刺激刺激可以防止Wnt受体的RNF43依赖性降解(FZD)。单细胞RNA测序分析表明,由于WNT/PCP信号有缺陷,DAAM1/2耗尽会损害Paneth细胞分化。一起,我们将DAAM1/2确定为一个意外的集线器分子,可以协调规范和非规范WNT,这对于指定足够数量的Paneth细胞是基本的。
摘要:心脏发育是一个时空调节的过程,从胚胎阶段延伸到产后阶段。这种高度精心策划的过程的破坏会导致先天性心脏病或使心脏疾病或心脏衰竭使心脏易受。因此,对控制心脏发育的分子机制有深入的了解,对开发各种心脏疾病的创新疗法具有很大的希望。尽管已经取得了心脏发育的新型转录和表观遗传调节剂的重大进展,但探索影响这一过程的翻译后机制却滞后。culling环E3泛素连接酶(CRLS)是最大的泛素连接酶家族,控制约20%的细胞内蛋白的泛素化和降解。新兴证据发现了CRL在调节广泛的细胞,生理和病理过程中的关键作用。在这篇综述中,我们总结了有关CRL对心脏形态发生和成熟的多功能调节的最新发现,并呈现未来的观点,以促进我们对CRLS如何管理心脏发育过程的全面理解。
哺乳动物肠道是最快的自我更新组织之一,由位于地下室底部的干细胞驱动。paneth细胞构成了利基微环境的主要元素,提供了各种生长因子来编排肠道干细胞稳态,例如Wnt3。不同的wnt配体可以选择性地促成β-catenin - 依赖(规范)或 - 独立(非规范)信号。在这里,我们报告说,形态发生1(DAAM1)及其副狗DAAM2不对称调节规范和非范围WNT(WNT/PCP)信号传导的Di-Shevell相关激活剂。daam1/2与Wnt抑制剂RNF43相互作用,而DAAM1/2双基因敲除刺激刺激可以防止Wnt受体的RNF43依赖性降解(FZD)。单细胞RNA测序分析表明,由于WNT/PCP信号有缺陷,DAAM1/2耗尽会损害Paneth细胞分化。一起,我们将DAAM1/2确定为一个意外的集线器分子,可以协调规范和非规范WNT,这对于指定足够数量的Paneth细胞是基本的。
植物细胞,组织和器官培养:整数,形态发生的基本方面:器官发生和体细胞胚发生,克隆传播,人造种子。单倍体,愈伤组织和细胞悬浮培养物的雄激素作用和产生,somaclonal变体的产生,培养物中二级代谢产物的产生,冷冻保存。Somatic hybridization and cybridization : Factors affecting protoplast isolation, culture and plant regeneration, Protoplast fusion-chemical fusion & electrofusion mechanism & techniques, Selection of heterokaryotic fusion products, biochemical selection and physical selection (micromanipulation, flow cytometric characterization and cell sorting), Analysis of hybrids, Somatic hybrids and cybrids for crop improvement.重组DNA技术:基因克隆 - 原理,克隆载体 - 质粒,噬菌体,cosmids&Phagemids;人工染色体,聚合酶链反应 - 原理,类型和应用,RT- PCR;基因组和C DNA库;重组DNA分子的构建及其动员到细菌中;重组克隆的分析,DNA测序。
摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
矿物营养:基本元素,宏观和微量营养素;元素本质的标准;基本要素的作用;离子跨细胞膜的运输,主动和被动传输载体,韧皮部韧皮部植物的易位,束缚实验;压力流模型;韧皮部负载和卸载酶:结构和特性;酶催化和酶抑制的机制。光合作用:光合色素(Chl A,B,Xanthophylls,胡萝卜素);光系统I和II,反应中心,天线分子; ATP合成的电子传输和机制; C3,C4和碳固定的CAM途径;光呼吸。呼吸:糖酵解,厌氧呼吸,TCA循环;氧化磷酸化,乙氧基化,氧化戊糖磷酸途径。氮代谢:生物氮固定;硝酸盐和氨气同化。植物生长调节剂:生长素,gibberellins,cytokinins,aba,乙烯的发现和生理作用。植物对光和温度的反应:光周期(SDP,LDP,日中性植物);植物色素(发现和结构),对光形态发生的红光反应;春化。-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。
摘要:长期以来,大麻一直用于治疗和工业用途。由于其在医药、娱乐和工业上的需求不断增长,迫切需要应用新的生物技术工具来引入具有理想特性和增强次生代谢产物产量的新基因型。微繁殖、保存、细胞悬浮培养、毛状根培养、多倍体操作和农杆菌介导的基因转化已在大麻中得到研究和使用。然而,转基因植物再生率低、毛状根培养和细胞悬浮培养中次生代谢产物生产效率低等一些障碍限制了这些方法在大麻中的应用。在当前的评论中,大麻的体外培养和基因工程方法以及其他有前景的技术,如形态发生基因、新的计算方法、成簇的规律间隔的短回文重复序列 (CRISPR)、配备 CRISPR/Cas9 的农杆菌介导的基因组编辑和毛状根培养,这些技术可以帮助改善基因转化和植物再生,并增强次生代谢产物的产生,已经被重点介绍和讨论。
Anny Yang(导师:Jean Star博士)“远程医疗后牙科诊所的父母偏爱DRGA之后” Caroline Chen(导师:Dr.杰弗里·布什(Jeffrey Bush)和爱丽丝·古德温(Alice Goodwin))“下颌骨特定的SOX9损失导致下颌畸形学和皮埃尔·罗宾序列鼠标模型中的下颌畸形和left裂。 Zhang) “Investigating the effects of amelogenesis on the junctional epithelial cells” Betty Birbo (Mentor: Dr. Snehlata Oberoi) “Evaluation of maxillary skeletal and dental dimensions in impacted canines” Khushboo Gupta , BDS, MDS Clinical Case “Diagnosing OFG and uncovering Crohn's in a challenging pediatric case” Tiange (Tony) Qu (Mentor: LICIA SELLERI博士)“细胞周期停止'Zimpering'上皮细胞簇介导小鼠和人类的形态发生” 11:30 - 30 - 12:00临床卓越临床卓越的聚光灯Jean M. Star,DDS,DDS,MPH,MPH,Orofacial Sciences,Orofacial Sciences,Orofacial Sciences的助理教授”
目的:阻塞性睡眠呼吸暂停 (OSA) 会导致低氧血症和睡眠不连续,从而导致神经认知障碍。我们假设 OSA 患者的皮质灰质通常会在与记忆处理和学习相关的区域(特别是海马内)发生局部损失。方法:基于体素的形态测量技术(一种用于磁共振图像的自动处理技术)用于描述七名新诊断为 OSA 的右利手男性患者和七名非呼吸暂停男性对照者的灰质结构变化(这七名对照者的惯用手和年龄匹配)。结果:分析显示,呼吸暂停患者左侧海马内的灰质浓度显著降低(p = 0:004)。右侧海马和其他大脑区域未见进一步显著的局部灰质差异。呼吸暂停患者和对照组之间的总灰质体积没有差异。结论:这份初步报告表明 OSA 患者的大脑形态发生了变化,海马体是认知处理的关键区域。q 2003 Elsevier BV 保留所有权利。