主编 – Charles Alcock 编辑 – AIN 月刊 – Nigel Moll 编辑 – 美国展会版 – Matt Thurber 编辑 – 国际展会版 – Ian Sheppard 新闻编辑 – AIN 月刊、AINonline – Chad Trautvetter 总编辑 – AIN 月刊 – Annmarie Yannaco 总编辑 – Mark Phelps 高级编辑 – Bill Carey、Curt Epstein、Kerry Lynch Gregory Polek – 航空运输编辑 撰稿人 Bryan A. Comstock – 专栏作家 Thierry Dubois – 旋翼机 Gordon Gilbert John Goglia – 专栏作家 Mark Huber – 旋翼机 David A. Lombardo – 维护 Paul Lowe Robert P. Mark – 安全 Harry Weisberger James Wynbrandt 集团制作经理 – Tom Hurley制作编辑 – Jane Campbell 创意总监 – John A. Manfredo 平面设计师 – Mona L. Brown、Greg Rzekos 数字媒体设计师 – Colleen Redmond 首席网络开发者 – Michael Giaimo 网络开发者 – Evan Williams 视频制作人 – Ian Whelan 集团出版商 – David M. Leach 出版商 – Anthony T. Romano 联合出版商 – Nancy O’Brien 广告销售 - 北美 Melissa Murphy – 中西部 +1 (830) 608-9888 Nancy O’Brien – 西部 +1 (530) 241-3534 Anthony T. Romano – 东部/国际 Joe Rosone – 东部/国际/中东 +1 (301) 834-5251 Victoria Tod – 大Lakes/英国广告销售 - 国际 – Daniel Solnica - 巴黎营销经理 – Zach O’Brien 观众开发经理 – Jeff Hartford 现场物流经理 – Philip Scarano III 集团品牌经理 – Jennifer Leach English SA
A.一般设计与建筑标准及规范53 1。专业工程师53 2。承包商53 3。审查权54 4。通信设施的安装/维护54 5。在标准中发生冲突55 6。请求豁免55 7。标记56 8。物理干扰CPS能源设施57 9.绩效干预附加实体客户58 10。无线干扰58 11。外壳60 12.植被管理61 13。删除附加实体的设施61 14。无线系统的预认证63
免责声明:本出版物中包含的信息基于撰写时(2024年7月)的知识和理解,可能不准确、不及时或不完整。新南威尔士州(包括初级产业和区域发展部)、作者和出版商对本文档(包括第三方提供的材料)中包含的任何信息的准确性、时效性、可靠性或正确性不承担任何责任。读者在根据本出版物中包含的材料做出决定时,应自行查询并依赖自己的建议。
•EPD的产品,现场和生产过程范围。例如,EPD可能覆盖在不同钢生产地点生产的相同产品。有些人可能比其他类别中涵盖更广泛的产品。可以使用不同的生产过程生产相同类型的产品。•EPD的有效性时间。en 15804允许最多5年的认证,但是许多仅有效期为3年。有效期为5年的EPD将使用至少6岁的数据集。•源数据的验证程度。第三方验证通常用于为EPD提供信誉;但是,某些验证允许在站点进行采样,而另一些则是位置和产品。•验证能力。至少每年至少每年都会在现场,将是钢铁行业专家,并且将对运营有深刻的了解,而其他人可能是通才,而根本不会访问该地点。•用于生命周期清单的数据库。有多种与生产过程和材料相关的排放数据。这些通常是可比较的,但是根据所使用的初始研究和边界,在数据库之间的特定值可能会有所不同。
开发具有以下特征的新型高温合金:(1)。高机械强度完整性;(2)。高抗氧化性;(3)。高抗渗碳性。所设计的合金有望应用于在高温(超过 750 ºC,例如 800 ºC)和高压(30 MPa)下在 sCO 2 中运行的热交换器。
6 测试条件.................................................. ... 14 6.2 车辆牵引和引导系统.................... ... . ... ... . ...
6 测试条件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 6.1 测试设施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 6.2 车辆牵引和引导系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 6.3 测试车辆。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 6.4 数据采集系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 6.4.1 加速度计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 6.4.2 速率传感器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 6.4.3 高速摄影。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 6.4.4 压力胶带开关。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
Bell态是实现量子信息任务的最基本资源,在量子力学中具有非常独特的地位,而利用轨道角动量(OAM)编码单光子Bell态可以实现高维Hilbert空间,这对于量子信息领域至关重要。本文设计了一种基于Sagnac干涉仪的单光子OAM Bell态演化装置,可以将输入Bell态与输出态一一对应。此外,我们还发展了一种单光子单像素成像(SPI)技术来获取输出态的干涉图像,该技术在提高空间分辨率的同时减少了采集时间。结果表明,通过对比干涉图像的差异可以完全识别单光子OAM Bell态,创新性地将SPI技术应用于单光子OAM Bell态的识别。这表明SPI技术有效促进了基于OAM的量子信息研究,而基于OAM的量子信息又为SPI技术提供了明确的应用场景。
虽然共形预测因子在其频率上获得了严格的统计保证的好处,但其相应的预测集的大小对其实际利用而言至关重要。不幸的是,目前缺乏有限样本分析,并保证了其预测设置尺寸。为了解决这一短缺,我们从理论上量化了在分裂的共形预测框架下的预测集的预期大小。由于通常无法直接计算此精确的形式,我们进一步得出了可以在经验上计算的点估计和高概率间隔边界,从而提供了一种表征预期设置大小的实用方法。我们通过在现实世界数据集上实验回归和分类问题来证实结果的功效。
摘要。了解哪些大脑区域与特定的1个神经系统疾病或认知刺激有关,一直是神经成像研究的重要领域。我们提出了Braingnn,这是一个图神经网络-3工作(GNN)框架,以分析功能磁共振图像4(fMRI)并发现神经生物标志物。考虑到大脑图的特殊5属性,我们设计了新型的Roi Awaw Agraw consolu-6 Tional(RA-GCONV)层,以利用fMRI的拓扑和功能7信息。是在需要透明度的透明度分析中的动机中,我们的braingnn包含ROI选择的池池9 ers(R-Pool),突出了显着的ROI(图中的节点),因此10我们可以推断出哪个ROI对预测很重要。此外,我们11提出正则化项 - 单位损失,TOPK PORING(TPK)损失和12个组级别的一致性(GLC)损失 - 通过汇总结果,以鼓励13个可追溯的ROI selection,并提供完全14个个人或与小组级别数据一致的单个个人或模式。我们将15个BRAINGNN框架应用于两个独立的fMRI数据集:自闭症16频谱障碍(ASD)fMRI数据集和人类Con-17 Nectome Project(HCP)900主题释放的数据。我们研究了超参数的18种选择,并表明Braingnn优于19的替代fMRI图像分析方法,该方法在四个不同的20个ENT评估指标方面。获得的社区聚类和显着的21 ROI检测结果表明,与先前的22个神经影像学衍生的ASD和特定任务的生物标志物的证据相应很高。23为HCP解码的状态。25接受后,我们将公开公开24。