本文提出了一种基于EEG形波变换的EEG通道选择方法,旨在减少受试者的设置时间和不便,并提高脑机接口(BCI)的应用性能。具体而言,该方法通过同时解决关于EEG形波学习、超平面学习和EEG通道权重学习的嵌入逻辑损失最小化问题来选择前k个EEG通道。特别地,为了学习有区别的EEG形波来加权每个EEG通道对逻辑损失的贡献,在此过程中还最小化EEG形波相似性。此外,本文采用梯度下降策略来解决非凸优化问题,最终得到称为StEEGCS的算法。结果,与所有EEG通道相比,使用StEEGCS选择的EEG通道的分类准确率有所提高,并且分类时间消耗也减少了。此外,在几个真实世界 EEG 数据集上与几种最先进的 EEG 通道选择方法的比较也证明了 StEEGCS 的有效性和优越性。
4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
图 02 卷积神经网络对猫、狗、马的图像进行分类的图像。假设我们输入一张猫的图像,并执行卷积等计算以获得三个输出,y 1 =1、y 2 =1、y 3 =1,我们试图从中确定它是否是一只猫。那时,我们不再平等对待这三种输出,而是给予重要的信息更高的分数。例如,y 1 显然是猫眼,所以我们会给它 5 倍的分数,而 y 2 和 y 3 看起来像猫的鼻子和耳朵,但它们看起来也像狗的鼻子和耳朵,所以我们'会给他们1倍的积分。因此最终传递给猫分类器的总点数为 z 1 = 5 + 1 + 1 = 7。另一方面,在狗分类器中,y 1 不是狗的眼睛,因此这些点乘以 0,y 2 和 y 3 乘以 1,因此 z 2 =0+1+1=2。在对于马分类器来说,y 1 、y 2 和 y 3 不是马的眼睛、鼻子和耳朵,所以都得 0 分,并且 z 3 =0+0+0=0。结果,猫分类器获得最高分数,最终输出“这张图片是一只猫”。为了能够自动做出高精度的判断,网络会利用大量猫的图像等教学数据进行训练,相当于调整点数增加的乘数(权重)。
相泽洋二教授,早稻田大学研究生院物理学硕士,非线性非平衡统计力学 津本忠二教授,大阪大学医学院神经生理学系博士/研究员课程 大阪大学研究生院神经外科博士 EEG 脑机接口的开发
报告的评估是由威尔士公共卫生的招标过程资助的。由斯旺西大学(Swansea University)领导的斯旺西,阿伯里斯特威斯大学(Aberystwyth)和班戈大学(Aberystwyth)和班戈大学(SABU)的研究联盟被授予该合同。合同开始日期是2022年1月和2023年3月结束日期。本报告和支持幻灯片集代表了2023年6月与资助人一致的最终可交付成果。作者负责所有数据收集,分析和解释以及写作工作。作者参加了与AWDPP团队和威尔士公共卫生研究与评估部门成员的月度会议,目的是报告评估的进度。临时调查结果仅在2023年3月提出的报告的初稿中提供给筹款人和AWDPP团队。威尔士公共卫生和AWDPP的代表在两轮审查中对这份报告以及我们的公共贡献者发表了评论。我们要感谢审稿人对这些迭代草案的建设性评论,作者已经阅读了这些迭代,并在此最终报告的制作中适当容纳了这些迭代。该最终报告代表了作者对所有威尔士糖尿病预防计划(AWDPP)的独立评估。本报告中表达的观点和观点是作者的观点,不一定反映了AWDPP团队和组成委员会的观点和观点,NHS WALES大学健康委员会或威尔士公共卫生。利益声明。SABU财团作者宣称他们没有竞争利益。报告中提供的任何逐字行情都是参与评估的参与者的观点和观点,不一定代表NHS威尔士大学健康委员会或公共卫生委员会的作者,AWDPP团队和组成委员会的观点和意见。L Kosnes(直到01.10.2022),P Anderson,S Harris和D Fitzsimmons是健康和护理经济学Cymru(HCEC)的成员,他支持这些人写原始招标(LK,PA,PA,SH和DF)的时间(LK,PA,SH和DF),并支持写作(PA,SH,SH,SH,DF)。HCEC由威尔士的健康和护理研究由威尔士政府资助。致谢我们要感谢以下时间给我们的评估的时间和支持:
进球3进球1:校园目标#1:增加得分的6-8年级学生的百分比在Staar(德克萨斯州评估学术准备就绪的评估)上的年级或更高的人数从2025年8月到2025年8月。3目标2:校园将增加在2025年8月到2025年8月的STAAR数学成绩达到年级或更高的6-8年级学生的百分比。5目标3:AJB将开展活动,使学生在高中时满足大学,职业和军事准备(CCMR)要求。6进球4:校园将建立一个蓬勃发展的学习社区,如校园平衡计分中的80或更高分数所示。6目标5:校园将提高组织健康清单(OHI)确定的员工满意度。7目标6:校园将改善由净促销者得分确定的学生,员工,父母和社区感知。9进球7:校园将在2025年8月之前对A或B进行评级。10
此信息和资源收集支持现成的学校,俄勒冈州教育部(ODE)于2021年发行的安全学习者弹性框架。本文档着重于通过最关键的形成性评估实践来满足学习者的学术需求。形成性评估是平衡评估系统的关键组成部分,极大地影响了学生的成就。引起,解释和使用证据作为正在进行的教学和学习的一部分,使教育者和学生可以调整使学生从当前的理解水平转移到展示预期的学习成果。研究支持的形成性评估是一个强大的学习过程;这不同于简化或包装的形成性评估版本,这些版本具有小型测试或测验,或孤立的反馈策略,例如“退出票”或“五个拳头”。形成性评估可能包括这种成分,但是一个以持续改进为基础的更为复杂,多维教学周期。此处仅解释了形成性评估的最关键维度;下面引用的OFAST课程可更深入地了解完整的形成性评估过程。本文档将有助于: