摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
摘要 - 可构造的对象操纵是一个充满挑战的研究主题,它引起了对机器人领域的日益兴趣,因为已经出现了解决此问题的新方法。到目前为止,文献中的大多数提出的方法都集中在形状控制上。被忽略了应用于物体的应变,因此排除了操纵脆弱产品的大部分工业应用,例如橡胶和塑料物体的脱胚层或食物的处理。这些应用需要在准确性和仔细操纵之间进行权衡,以保留操纵对象。在本文中,我们提出了一种方法来最佳控制线性和平面变形对象的变形,同时还最大程度地减少对象的变形能。首先,我们修改了最初为线性软机器人控制开发的框架,以使其适应可变形的物体机器人操作。为此,我们将问题重新制定为一个优化问题,其中考虑对象的整体形状,而不是仅专注于对象的位置和方向的尖端。然后,我们在成本函数中包含一个能量项,以找到在达到所需形状的同时最小化操纵物体中潜在的弹性能量的解决方案。对于高非线性问题的解决方案众所周知,很难找到对局部最小值的敏感性。我们定义了连接对象的已知初始和最终配置并顺序解决问题的中间最佳步骤,从而增强了算法的鲁棒性并确保解决方案的最佳性。然后使用中间最佳配置来定义机器人的终端效果轨迹,以使对象从初始配置变形为所需的配置。索引术语 - 可通知的对象操纵,机器人技术,形状控制,优化,轨迹生成
摘要。由于限制了诸如耗电耗电和可扩展性之类的限制,因此对较大的机器学习模型的培训和推断需求不断增加。光学器件是提供较低功率计算的有前途的竞争者,因为通过非吸收介质的光传播是无损操作。但是,要用光进行有用的高效计算,在光学上产生和控制非线性是一种仍然难以捉摸的必要性。多模纤维(MMF)已证明它们可以提供平均功率的微小效应,同时保持并行性和低损失。我们提出了一种光学神经网络体系结构,该体系结构通过通过波前形状控制MMF中超短脉冲的传播来执行非线性光学计算。使用替代模型,发现最佳参数集可以用电子计算机最少利用来为不同的任务编程此光学计算机。与同等执行的数字神经网络相比,模型参数数量的显着降低了97%,这导致总体上99%的数字操作减少。我们进一步证明,还可以使用竞争精确的精度执行完全的光学实现。
摘要:航空工业的快速发展对材料性能提出了越来越高的要求,智能材料结构的研究也受到了广泛的关注。智能材料(如压电材料、形状记忆材料、超磁致伸缩材料等)具有独特的物理性能和优异的集成性能,在航空工业中作为传感器或执行器表现出色,为航空工业的各类智能化应用提供了坚实的材料基础。压电材料作为一种热门的智能材料,在结构健康监测、能量收集、振动噪声控制、损伤控制等领域有着大量的应用研究。形状记忆材料作为一种具有变形能力的独特材料,在形状控制、低冲击释放、振动控制、冲击吸收等领域都有着自己突出的表现。同时,作为辅助其他结构的材料,在密封连接、结构自修复等领域也有着重要的应用。超磁致伸缩材料是一种具有代表性的先进材料,在导波监测、振动控制、能量收集等方向具有独特的应用优势。此外,超磁致伸缩材料本身具有高分辨率输出,在高精度执行器方向的研究也较多。本文对上述应用方向的一些智能材料进行总结和讨论,旨在为后续相关研究的初步开展提供参考。
最先进的半导体光刻将我们世界上最先进的光学系统与巧妙设计且高度优化的光化学材料和过程结合在一起,以制造使我们的现代信息社会的微型和纳米结构。应用光学,化学和材料科学的独特组合为对应用自然科学和技术感兴趣的科学家和工程师提供了理想的游乐场。多年来,光刻图案技术的发展几乎仅仅是按照驱动的扩展,并着重于改进分辨率,以支持戈登·摩尔(Gordon Moore)将更多组件挤在集成电路上的愿景。尽管这种缩放量仍未达到其最终限制,但在具有所需统一性且没有缺陷的半导体芯片上产生更多和较小的模式变得越来越困难和昂贵。针对新兴新颖应用的未来光刻技术必须强调不同的要求,包括三维(3D)形状控制,新颖(功能)材料的整合,非平面表面上的图案,对目标模式的灵活适应最终应用等等等。在技术开发50多年的技术开发中获得的半导体光刻者的知识和经验为开发新型微型和纳米技术驱动的应用提供了重要关键。它还应帮助高级工程师和经理对替代方法和应用程序的看法。本书并不是要提供对印刷图案技术各个方面的完整描述。这本书的材料是在多年的有关光刻的讲座上编写的:在Friedrich-Alexander-University-University Erlangen-Nuremberg上的技术,身体效果和建模,并为公司的特殊方面以及公司的特殊方面以及作为会议的附带活动准备专门的课程。本书旨在帮助有兴趣的学生具有物理,光学,计算工程,数学,化学,材料科学,纳米技术和其他领域的背景的学生,以在纳米化的光刻技术的迷人领域开始使用。相反,该书着重于对图像和模式形成的基本原理的解释。
德国航空航天中心智能结构技术概述 作者:Hans Peter Monner 和 Peter Wierach,德国航空航天中心 (DLR),复合结构和自适应系统研究所 摘要 德国航空航天中心复合结构和自适应系统研究所于 1993 年成立了 Adaptronics 部门。它是德国最大的研究自适应结构系统的科学家团队。主要目标是 − 主动噪声控制, − 主动振动控制, − 主动形状控制。该部门致力于国家项目,如先进飞机结构(DLR 项目)、LEITPROJEKT ADAPTRONIK(BMBF 项目)、自适应并联机器人(DFG 项目)和国际项目,如 FRIENDCOPTER(EU IP)、INMAR(EU IP)、ARTIMA(EU STREP)、电活性聚合物(ESA)。这涉及智能结构的许多方面研究,包括材料特性、执行器和传感器的开发和设计、智能元件的结构集成、先进控制概念的开发以及自适应系统的模拟和建模。本文概述了该部门在该领域的一些活动。1.简介 智能结构涉及五个关键要素:结构材料、分布式执行器和传感器、控制策略和电源调节电子设备。借助这些组件,智能结构能够响应不断变化的环境和操作条件(例如振动和形状变化)。微处理器分析传感器的响应,并使用集成控制算法命令执行器施加局部应变/位移/阻尼,以改变弹性机械系统响应。执行器和传感器通过表面粘合或嵌入高度集成到结构中,而不会导致系统质量或结构刚度发生任何重大变化。智能结构技术是一个高度跨学科的领域,相关方法和技术仍处于早期发展阶段。在经历了大约在 90 年代初的“炒作”阶段之后,人们对智能结构技术的潜力和局限性有了相当清晰的认识。这也是为什么现在智能结构技术的众多应用不断发展以主动控制振动、噪音和变形的主要原因。2.主要活动应用范围从空间系统到固定翼和旋翼飞机、汽车、光学系统、机床、医疗系统和基础设施。
钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。