摘要:各种形貌和化学性质的纳米材料广泛用于光子装置、高级催化剂、水净化吸附剂、农用化学品、药物输送平台以及成像系统等等。然而,寻找满足特定需求、具有所需结构、形状和尺寸的定制纳米材料的合成路线仍然是一个挑战,而且通常通过手动筛选研究文章来实现。在这里,我们首次通过迁移学习 (TL) 开发了扫描和透射电子显微镜 (SEM/TEM) 反向图像搜索和基于手绘的搜索,即 VGG16 卷积神经网络 (CNN) 重新用于图像特征提取和随后的图像相似性确定。此外,我们展示了该平台在碳酸钙系统上的案例使用,其中通过随机高通量多参数合成获得了足够量的数据,以及从文章中提取的金纳米颗粒 (NPs) 数据。该方法不仅可用于先进纳米材料的搜索和合成程序验证,还可以进一步与机器学习(ML)解决方案相结合,提供数据驱动的新型纳米材料发现。
摘要:研究了溶液法制备的银 (Ag) 纳米粒子修饰多壁碳纳米管 (MWNT) 填充硅胶复合膜的电性能。使用亚硫酰氯将原始 MWNT 氧化并转化为酰氯功能化的 MWNT,随后将其与胺基封端的聚二甲基硅氧烷 (APDMS) 发生反应。随后,用银纳米粒子修饰 APDMS 修饰的 MWNT,然后与聚二甲基硅氧烷溶液反应形成银修饰 MWNT 硅胶 (Ag-decorated MWNT-APDMS/Silicone) 复合材料。通过透射电子显微镜 (TEM) 观察了含有银修饰 MWNT 和 APDMS 修饰 MWNT 的硅胶复合材料的形貌差异,并通过四探针法测量了表面电导率。 Ag修饰的MWNT-APDMS/硅胶复合膜比MWNT/硅胶复合膜表现出更高的表面电导率,说明可以通过用APDMS和Ag纳米粒子对MWNT进行表面改性来改善Ag修饰的MWNT-APDMS/硅胶复合膜的电性能,从而拓展其应用领域。
化石燃料的消耗和日益紧迫的环境问题。[1,2] 人们投入了大量研究精力来开发各种类型的清洁能源转换和存储技术;这些密集的研究活动导致了太阳能电池、风力涡轮机、可充电电池 (RB) 和超级电容器的开发和商业化取得了巨大进展。[3–8] 金属卤化物钙钛矿太阳能电池 (PSC) 的快速发展代表了可再生能源转换领域最新和最令人兴奋的发展的一个极好例子。 [9–15] 由于其可调的带隙、[16] 高载流子迁移率、[17–19] 大的光吸收系数、[20] 和低的形成能,[21] 进展能够将光电转换效率 (PCE) 从 2009 年的 3.8% 迅速提高到 2019 年的 25.2%。[9,22] 每个组成部分的研究贡献对这一进展都不可或缺,这些进展包括调整化学成分和加工方法、控制晶体度和形貌、以及设计表面/界面缺陷。[23,24]
近几年,钙钛矿材料成为光电器件领域的“明星材料”,具有巨大的实际应用潜力。钙钛矿晶格的对称/非对称性不仅影响钙钛矿的能带结构、声子频率和缺陷态,而且对器件性能也起着关键作用。因此,研究钙钛矿材料的对称/非对称性和晶体质量具有重要意义。在“钙钛矿的进展:生长、表征和光电器件”特刊中,我们将主要关注钙钛矿领域的最新进展,包括:1. 生长无机和杂化钙钛矿的新方法;2. 合成钙钛矿的光学特性、形貌和晶体结构;3. 阴离子/阳离子交换/排列和晶体对称/非对称性;4. 钙钛矿在不同环境中的稳定性;5. 光电器件的制备,包括光电探测器、太阳能电池、激光二极管和发光二极管。
波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
这些一维碳纳米材料包括单壁和多壁碳纳米管(CNT)、带状和板状碳纳米纤维、竹状碳纳米管、杯状堆叠碳纳米纤维等。[7–10] 一维材料广泛应用于复合材料、涂层、传感器、电化学储能和电催化剂,利用其强度、导电性、低密度、宽带电磁吸收、高表面积和化学稳定性。[11–14] 由于其广泛的用途和科学兴趣,找到合成一维碳材料的新方法仍然至关重要。形成一维碳材料的大多数合成策略,包括电弧放电、激光烧蚀、化学气相沉积、等离子炬和高分压一氧化碳,都涉及在催化金属表面移动原料中的碳原子,然后碳原子生长成石墨一维形貌。 [15] 当前的这些方法通常会生成需要分离的一维材料和无定形碳的混合物,而一维材料的合成通常存在生产率低(< 1 gh −1 )的问题。[16–18]
1 北京理工大学机电学院,北京 100081 2 先进加工技术研究中心,北京 100081 * 电子邮件:heleibuaa@126.com,xucg@bit.edu.cn 收稿日期:2020 年 2 月 2 日 / 接受日期:2020 年 3 月 22 日 / 发表日期:2020 年 5 月 10 日 以硫酸锰和高锰酸钾为原料,CTAB 为表面活性剂,采用简单沉淀法合成 MnOOH 纳米棒,并以此为前驱体制备 Mn2O3 纳米棒。通过超声显微镜和电化学测试等各种物理化学实验对 Mn2O3 纳米棒的结构和性能进行了全面研究。 X 射线衍射、扫描电镜和透射电镜观察表明 Mn 2 O 3 结晶性良好,具有均一的棒状形貌,纳米棒的宽度和长度分别为 200~300 nm 和 2~4 μm。进一步分析该材料的电极性能发现,将其用作锂离子电池负极材料在 0.1C 倍率下可获得 1005 mAh·g -1 的二次放电容量。关键词: MnOOH;负极材料; Mn 2 O 3;锂离子电池。1.引言
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。
电子束-粉末床熔合 (EB-PBF) 技术中通常沿构建方向形成柱状晶结构,导致物理和机械性能各向异性。本研究模拟了铸件凝固条件,并在 EB-PBF 中促进了原位再结晶,以促进 718 合金中柱状晶到等轴晶结构转变。这是通过独特的线性熔化策略以及 EB-PBF 中特定的工艺参数选择来实现的。研究发现,使用线序号 (LON) 函数的定点熔化会影响冷却速度和温度梯度,从而控制晶粒形貌和织构。高 LON 会产生大的等轴晶粒区和随机织构,而固定的 LON 和高面能量密度会产生强织构。研究了转变过程中形成裂纹和收缩缺陷的主要驱动力。固定面能量密度下的高 LON 减少了平均总收缩缺陷和裂纹长度。硬度在转变过程中降低,这与 γ ′′ 沉淀物尺寸的减小有关。