量子纠缠:自旋 1/2 Masatsugu Sei Suzuki 和 Itsuko S. Suzuki 纽约州立大学宾汉姆顿分校物理系 (日期:2022 年 2 月 7 日) 在这里我们讨论量子纠缠的物理学。起初,本科生如果只想知道量子纠缠的基本点,可能会在理解技术术语的定义时遇到一些困难,例如超距幽灵作用、非局域性、局域性、隐变量理论、可分离性、量子比特等等。这些词的定义在附录中给出(来源:维基百科)。贝尔不等式的推导在数学上并不那么复杂。人们必须从实验的角度验证贝尔不等式不满足量子纠缠现象,并使用纠缠的自旋或光子。到目前为止,已经出版了许多关于量子纠缠、量子信息和量子计算机的书籍。即便我读了这些书,包括量子力学的教科书,我还是没有充分理解超距幽灵行为到底是怎么回事。为了给本科生讲授量子纠缠,我觉得有必要更详细地了解量子纠缠的这种怪异性。当我努力理解爱因斯坦命名的超距幽灵行为时,我有幸读了一本名为《爱因斯坦:他的一生和宇宙》(W. 艾萨克森著)的书。我意识到这本书可以很好地描述量子纠缠行为的怪异性。当然,那些想从数学上了解这种怪异行为本质的物理学家,可能不会满足于艾萨克森给出的简单明了的解释。这里将这本书的内容总结如下。(a)量子力学断言,粒子除了被观察时外,没有确定的状态,两个粒子可以处于纠缠态,因此对一个粒子的观察可以立即决定另一个粒子的性质。一旦进行任何观察,系统就会进入固定状态。(b)这对于微观量子领域来说可能是可以想象的,但当人们想象量子领域与可观察的日常世界之间的交集时,就会感到困惑。(c)EPR 论文未能成功证明量子力学是错误的。但最终确实清楚,量子力学与我们对局域性的常识理解不相容——我们对远距离幽灵般的作用的厌恶。奇怪的是,爱因斯坦显然比他希望的要正确得多。
摘要此病例报告记录了一名被诊断出患有Catatonic精神分裂症的30岁男子电击疗法(ECT)的干预,其中药理治疗失败了。catatonic精神分裂症是一种罕见但严重的亚型,其特征是运动障碍,例如催化,武术和混乱的运动运动。本报告中的患者表现出对包括氟哌啶醇和氯氮平在内的抗精神病药的耐药性,促使医疗团队作为治疗性替代品进行ECT。在密切的监督下进行了ECT程序,结果显示患者的发生症状的症状有显着改善,幻觉减少和社交互动的增加。本报告证实了ECT在治疗耐治疗精神分裂症中的血统症状方面的有效性,以及个性化方法在该疾病管理中的重要性。关键字:电击疗法(ECT); Catatonic精神分裂症;抗治疗性;抗精神病药。摘要laporan kasus ini mendokumentasikan intervensi电击疗法(ECT)PADA SEORANG PRIA BERUSIA 30 TAHUN YANG DIDIAMNGNOSIS DINABSOS DENGAN SKIZOFRENIA KATATONIA KATATONIK,DI MANA PENGOBATAN PENGOBATAN PENGOBATAN PENGOBATAN PENGOBATAN FARMAKOGIS FARMAKOGIS TIDAK MENSIKIKAN HASIL YASIL YASIL YANG MEMADAI。skizofrenia katatonik merupakan子最好的Yang Jarang Namun Parah,Ditandai Dengan GangGuan Motorik Seperti Katalepsi,Mutisme,Dan Gerakan Motorik Yang Motorik Yang Tidak Teratur。pasien dalam laporan ini menunjukkan抵抗Terhadap obat-obatan antipsikotik,termasuk haloperidol dan clozapine,Yang Mendorong Tim Medis untuk Melakukan Melakukan Melakukan ect ect ect ect sebagai externatif terapeutik。通过严格的监督进行了ECT程序,结果通过减少幻觉和增加社交互动,显示出患者的catatonic症状的显着改善。本报告证实了在精神分裂症患者对治疗具有抵抗力的精神分裂症中,ECT在克服结算症状方面的有效性,以及个性化方法在控制这种疾病中的重要性。关键字:电击疗法(ECT); Catatonic精神分裂症;抗治疗性;抗精神病药。
皮质神经假体视觉中的挑战是确定视觉皮层的最佳,安全刺激模式,以唤起盲人个体中所需的感知(特别是光感知),称为磷光素。当前,临床研究通过要求描述刺激方案的描述来洞悉感知磷光的感知特征。然而,多电极刺激设置的巨大参数空间使得很难得出关于导致良好感知磷光的刺激模式的最佳结论。需要在电刺激的参数空间中进行系统搜索,以实现良好的感知。贝叶斯优化(BO)是有效查找最佳参数的框架。使用患者对感知的评分作为反馈,可以建立基于迭代产生的刺激方案的患者反应模型,以最大程度地提高感知质量。通过迭代呈现刺激方案测试了用内部96通道微电极阵列植入的患者,该患者通过BO生成的刺激方案,用于第二个实验,该刺激方案是通过BO生成的。虽然标准BO方法并不能很好地扩展到超过十几个输入的问题,但我们建议使用基于信任区域的BO优化一组40个电极电流。生成的协议确定了哪些电极是从集合中同时刺激的,以及从0-50 µA范围的电流,最大总电流约束为500 µA。患者根据李克特量表上对感知质量的喜好提供了每种刺激的反馈,其中7个分数表示最高质量和0没有感知。在BO实验中,与RG实验相比,患者感知质量评级逐渐收敛于更高的值。同样,根据观察到的患者对较高的磷光磷酸的偏好,BO选择了逐渐更高的总电流值。最后,在先前的研究中,观察到的电极在产生磷光感知方面更有效,也可以通过BO逐渐选择较高的电流值的分配。这项研究证明了BO基于患者的反馈而融合到最佳刺激方案的力量,从而更有效地搜索了临床研究的刺激参数。
我们的回应 对于您所要求的信息,我们的回应是: - 这项名为“威尔士陆上风能和太阳能潜力评估”的研究由咨询公司 Arup 代表威尔士政府进行,旨在提供证据帮助制定未来威尔士(在制定过程中称为国家发展框架)可再生能源政策并帮助确定预评估区域(在准备未来威尔士期间称为优先区域)。该研究包括第一阶段和第二阶段报告,可在威尔士政府网站上公开获取(另见下面列出的未来威尔士链接)。该研究确定了可能的政策选项,并进行了约束练习和景观评估,旨在确定可能适合威尔士开发风能和太阳能的地区。评估方法在第一阶段和第二阶段报告中列出。在准备未来威尔士期间,威尔士政府正在制定政策(涉及所有规划主题),并与公众和其他相关方进行了更广泛的接触和协商。未来威尔士政策 17 和 18 提供了评估大规模可再生能源提案的政策框架,是广泛的整体咨询和参与过程的一部分。预评估区域的最终迭代由 Arup 研究和咨询过程提供信息。有关预评估区域的最终选择和重新编号的更多信息,请参阅 ATISN (FOI) 17200,其中解释了在 ARUP 报告 (2019) 发布和未来威尔士最终版本 (2021) 之间修改或省略了哪些潜在区域。未来威尔士的参与和咨询流程和活动已发布,可在威尔士政府的未来威尔士网页 (参与) 和我们的咨询网页上查看。《咨询报告 - 国家发展框架草案 (2020 年 9 月)》包括对重点领域/预评估区域的咨询意见摘要。对国家发展框架草案 (2019) 的个人回复也可以在我们的网站上查看。请参阅下面的未来威尔士链接列表,您可能会觉得有帮助。未来威尔士网站未来威尔士:2040 年国家计划网站 - 所有有关未来威尔士准备工作的主要文件(除下文的咨询外)
小猫:给新主人的建议 我们祝贺您拥有了一只新小猫。养猫可以是一种非常有益的经历,但同时也是一项重大的责任。我们希望这份宣传资料能为您提供必要的信息,以便您就您的小猫做出一些正确的决定。 首先,我们非常感谢您选择我们来帮助您进行小猫的健康护理。如果您对小猫的健康有任何疑问,请随时致电我们的医院。我们的兽医和工作人员将很乐意为您提供帮助。 我应该如何将我的小猫介绍给它的新环境? 猫天生倾向于探索它的新环境。建议最初限制小猫的探索范围,以便您可以监督它的活动。在最初几天将猫限制在一个房间里后,您应该慢慢允许它进入家中的其他区域。 我应该如何将我的新小猫介绍给我的另一只猫? 大多数小猫都会受到其他家养宠物的敌意接待,尤其是另一只猫。另一只猫通常认为家中不需要小猫,如果它感觉到小猫受到特别的偏爱,这种感觉会更加强烈。现有的猫不能觉得有必要争夺食物或注意力。新来的小猫应该有自己的食盆,不应该允许它吃另一只猫的食盆里的食物。虽然花时间抱着小猫是很自然的,但现有的猫很快就会感觉到它被忽视了。新来的小猫需要很多爱和关注,但现有的猫不应该被忽视。事实上,如果现有的猫得到比平时更多的关注,过渡会更顺利。在小猫最初被关押期间,两只猫会习惯彼此的气味,但不会见面。这种预先介绍最终也会有助于介绍。介绍期通常持续一到两周,可能会出现以下三种结果之一:现有的猫对小猫仍然怀有敌意。偶尔会发生打架,尤其是当两只猫都试图同时吃同一个碗里的食物时。如果在最初几周内尽量减少对食物和感情的竞争,这种情况就不太可能发生。
1。Structural and electrochemical properties of spinel structured NiCO 2 O 4 nanoparticles sintered at different temperatures for potential supercapacitors, Sathyanarayana N, Shilpa Chakra Ch, Sadhana K, Venkata Narayana M, Ravinder Reddy B, 12th International İstanbul Scientific Research Congress on Life, Engineering, and Applied Sciences- Conference Proceedings, Pg 595-602,2023年1月2日。开发基于MOF的可回收光催化剂,用于去除不同有机染料污染物,Narasimharao Kitchamsetti,Chidurala Shilpa Chakra,Ana Lucia lucia lucia ferreira de Barros,Daewon deewon,Daewon Kim,Daewon Kim,纳米材料,13,2023,336,336,336,336,336,336,336,336,336,336,336,336,336,336,336,336,336,336。3。双功能G-CN/碳纳米管/WO三纳米纳米杂交型含量催化能量和环境应用,U.Bharagav,N.Ramesh Reddy,V.Nava Koteswara Rao,P.Ravi,P.Ravi,P.Ravi,P.Ravi,P.Ravi,P.Ravi,M.Sathish,M.Sathish,Dinesh Rangappa,Dinesh Rangappa,K.Prathap,Ch.prathap,Ch.prathap,Ch.prathap,Ch.prathap,Ch。Shilpa Chakra,M.V.Shankar,Lise Appels,Tejraj M,Aminabhavi,Raghava Reddy Kakarla,M.Mamatha Kumari,Chemosphere,311,2023,2023,137030 4。杂交对混合NIO/ V2O5@石墨烯复合材料作为高级超级电视材料材料的影响的影响一种简单的解决方案燃烧方法,用于合成超级电容器应用的V2O5纳米结构,Shivani Sutrave,Shireesha Konda,Shireesha Konda,Divya Velpula,Sriram Ankith Alkith彩维,Sugunakar Reddy Reddy Reddy Reddy Ravula,Shilpa Chakra Chakra chakra chicidalala,bala narsa narsa narsa narsaia tracecance trocance 22 6。10。对减少特定电容剂的影响的系统调查分析Zno Napoarticle在超级电容器中的特定电容:表面活性剂和稳定剂的作用,Snehasree Redy Yekkaluri Nassaiah Tuts,Navaneth Reddy Man,Rakesh Deshmukh,应用地面科学进步,12,2022 100326 7。Bimetallic MOF衍生的Znco2O4纳米元素是有机污染物的高性能的新型,Narasimha Rao Kitchamsetti de Barros,无机化学通信卷144,2022,109946 8。MN3O4,MN3O4/AC和MN3O4/CNT复合材料的粗略合成,用于/在能量缓存中应用,Sakaray Madhuri,Chidurala Shilpa Chakra,Katlakunta Sadhana,Vallela Divya,Vallela Divya 2022 9。
注释1.中性粒细胞:一种白细胞。它可以对抗细菌和真菌等病原体,在保护身体免受感染方面发挥重要作用。 注2.巨噬细胞:一种白细胞。它们有能力吞噬和分解侵入人体的细菌和病毒等病原体以及不必要的细胞,并引发免疫反应。 注3.腹腔冲洗细胞学检查:一种病理检查,将生理盐水注入腹腔,制备标本,检查是否存在恶性细胞。若存在恶性细胞,则细胞学检查判定为阳性;若不存在恶性细胞,则细胞学检查判定为阴性。 注4. Vision Transformer:将在自然语言处理领域带来突破的具有注意力机制的Transformer应用于计算机视觉的模型。 [纸张信息]标题:深度学习使用腹膜阳性洗涤细胞学作者预测胰腺癌患者的1年预后:Noguchi Aya,Numata Yasushi,Sugawara takayori,Miura Hiromori,Konno kaori,konno Takayuki,Ariake Kyohei,Nakayama Shun,Maeda Shinpei,Otsuka Hideo,Mizuma Masamichi,Nakagawa Kei,Morikawa Kei,Akatsuka kei,Akatsuka Jun,Maeda jun,Maeda iChiro和病理学,东北大学医学院研究生院山本托Yoichiro,瑞肯高级情报项目中心病理信息学团队团队负责人(也是科学报告)发表于:科学报告
背景:脑视觉障碍(CVI)是早期脑损伤,损害或畸形的常见序列,是全球儿科种群中视觉功能障碍的主要原因之一。尽管CVI患者在潜在的病因和视觉行为表现方面都是异质的,但在可能会改变白质途径方面,可能存在基本相似之处。这项探索性研究使用扩散散曲学来检查体积,数量各向异性(QA)的潜在差异,以及平均,轴向和径向扩散率(平均扩散率(MD),轴向扩散率(AD)和径向扩散(RD),分别与典型的典型序列相比,轴向扩散率(AD)和径向扩散(RD)与年轻人的途径相比视力和发展控制。方法:在10个患者的样本中获取了高角度分辨率扩散成像(HARDI)数据,该样本具有CVI诊断(平均年龄= 17.3岁,2.97年龄,标准偏差(SD),范围14-22岁)和17个对照(平均年龄= 19.82岁,19.82岁,3.34 SD,SD,15-25岁范围)。下纵向筋膜(ILF),下额枕骨(IFOF),垂直胸膜筋膜(VOF)以及上纵向筋膜上的三个划分(SLF I,II和III)实际上是对内部和平均体积进行了调整的,并且是对内部和平均体积的比较(与静脉内的体积相结合)。组。作为次要分析,进行方差分析(ANOVA)以研究基于病因的潜在差异(即,由于周围的脑室白细胞(CVI-PVL)和CVI引起的其他原因(CVI-PVL),其他原因(CVI-NONPVL)引起的CVI)。结果:我们观察到CVI组内的差异很大,这在检查CVI样品作为单一组时,将整体组差异最小化。在我们的次级分析中,我们观察到与对照组和由于其他原因引起的CVI的个体相比,CVI-PVL组的道量显着减少。与对照组相比,CVI-PVL中的质量质量,MD和AD的显着增加,在CVI-NONPVL组中具有混合作用。结论:这些数据提供了与视觉感知处理技能有关的关键白质fasciculi的异常发展的初步证据,CVI患者通常会受到不同程度的损害。结果还表明,白质变化的严重程度和程度可能部分是由于脑视觉障碍的根本原因。需要在更大的样本中与行为测试一起进行其他分析,以充分理解CVI患者中白质完整性,视觉功能障碍和相关原因之间的关系。
方法” 首席研究员:Vania Broccoli 博士 - CNR-米兰神经科学研究所 - IRCCS Ospedale San Raffaele,米兰 弗里德赖希共济失调 (FA) 是一种遗传性神经退行性疾病,导致步态和肢体进行性共济失调、构音障碍、腱反射丧失、锥体征和脊柱侧弯,并伴有心肌病和糖尿病。在某些情况下,患者会出现听力障碍和因视神经萎缩导致的视力严重丧失。关于这种疾病病理机制的大部分研究都集中在小脑和背神经节感觉神经元的退化。人们对视觉功能障碍和视网膜神经元退化的根本原因知之甚少。 我们的小组从 2 名患有中度或重度 AF 神经症状的患者体内生成了重编程干细胞 (iPSC),这 2 名患者分别因 Frataxin 基因中 GAA 性状的短暂或较大扩增而引起。在这个项目中,iPSC 细胞将分化为视网膜、感觉背神经节和大脑皮层的神经元,以研究细胞和线粒体的病理变化。通过比较分析,我们可以了解不同神经元类别中病理过程的进展和动态,这些神经元类别对 Frataxin 基因的失活更敏感(背神经节感觉神经元和视网膜神经元)或更抗性(大脑皮层神经元)。该项目的第二部分旨在利用 Cas9 蛋白生成“基因编辑”系统,目的是通过表观遗传机制重新激活沉默的 Frataxin 基因。通过这种方式,可以去除沉默基因的染色质修饰,诱导其启动子的重新激活和基因的重新表达。这种策略的优势在于,它能够以自身水平的表达激活内源基因,从而避免传统基因治疗方法中可能出现的基因过度表达引起的副作用。该系统的有效性将通过在患者成纤维细胞和疾病小鼠模型中重新激活 Frataxin 基因的能力来评估。还将研究 Frataxin 重新激活是否能够恢复以及在多大程度上恢复患者 iPSC 中存在的细胞和线粒体缺陷。该项目旨在通过使用患者干细胞生成受疾病不同影响的各类神经元,获得有关 FA 病理机制的新知识。此外,还将开发新的分子工具,可用于重新激活疾病中沉默的 Frataxin 基因,从而成为 AF 的新精准医疗治疗选择。 Tipo Ricerca:工作室预临床 Costo globale del Progetto 320.000 €,持续时间 2 anni(2022 年 4 月 – 2024 年 4 月)
MSCI 中国全股小型股指数 新增 删除 安徽安科 A 三旺数据 A 瀚海微电子 A 炬力科技 A 北京汽车集团 雅居乐集团 郑州银行 A 奥进医疗 A 北京北斗星通 A 安福测控 A 北京易华录 A 安徽博世环境 A 北京光环新网科技 A 安徽正新 A 百世科技(上海) A 安徽国机科技 A 贝达药业 A 安徽圣和药业 A 康玛科技 A 安徽万通科技 A 昌久控股 安徽中原新材 A 成都康弘 A 安元煤炭工业集团 A 诚信锂业集团 A 苹果香精香料 A 中国企业 A 亚洲水泥 中国控股 中国机械 环宇 A 亚洲 中能科技 A 中国医用系统 百达集团 A 中国海外控股 保灵宝生物 A 中铁物资 A 包头东宝生物 A 重庆涪陵化工 A 北京巴士传媒 A 重庆太极实业 A 北京八亿空间液晶显示 A 中集赛福威科技 A 北京蜂巢科技 A 中核华源钛业 A 北京北陆 A 中远海运港口 北京北威社区 A 碧桂园控股 北京中关村科技 A 国家花园城 SVCS 北京 科门斯新材 A 中粮控股 北京 创意科技 A 东方博控股 北京 数通科技 A 艾博特医疗科技 A 北京 动力科技 A 孚能科技 A 北京 易科星 A 新城控股 A 北京 汉仪创新科技 A 高途科技 A ADR 北京 浩瀚数据 A 协鑫能源科技 A 北京 热能生物科技 A 协鑫系统集成科技 A 北京 华如科技 A 金地集团 A 北京 信安科技 A 宏拓永兴集团 A 北京 英汉网络 A 贵州振华 A 北京 航海科技 A 海南德林达新能源 A 北京全世世界A 杭州长川A 北京西洋A 河北衡水老白A 北京盛通印刷A 宏日达科技A 北京赛德科技A 宏源绿能A 北京双威天地A 新华大厦A 北京同亿众A湖北宏源药业 A 北京华鲁尔信息科技有限公司 A 汇通达网络有限公司 A 汇通达网络有限公司 A 创新新玛特 A 贝因美有限公司 A 英诺维塔生物科技有限公司 A 贝肯股份公司 A 江苏固德威科技有限公司 A 贝瑞基因科技有限公司 A 江苏正丹化工有限公司 A 必得医药科技有限公司 A 江西特邀电子商会电信公司 A 酒鬼酒 A 博济医药 A 建滔集团(中国) 邦达供应链 A 金盛半导体 A 建发华信工程 A 美豪创新 A 嘉必优生物(武汉) A 美年大健康 A 彩纳科技 A