7.1. 概述 ................................................................................................................................................................................ 14 7.2. 功能框图 ................................................................................................................................................................ 14 7.3. 特性描述 ................................................................................................................................................................ 15 7.3.1. TXD 显性超时功能 (TXD DTO) ............................................................................................................................. 15 7.3.2. 总线显性超时功能 (Bus DTO) ............................................................................................................................. 15 7.3.3. 引脚 VCC 和 VIO 上的欠压检测 ............................................................................................................................. 15 7.3.4. 未上电设备 ............................................................................................................................................................. 15 7.3.5. TXD 和 STB 输入引脚的内部偏置 ............................................................................................................................. 15 7.3.6. 7.3.7. 过流保护 (OCP) ...................................................................................................................................................... 16 7.4. VIO 电源引脚 ...................................................................................................................................................... 16 7.5. 设备功能模式 ...................................................................................................................................................... 16 7.5.1. CAN 总线状态 ...................................................................................................................................................... 16 7.5.2. 正常模式 ............................................................................................................................................................. 17 7.5.3. 待机模式 ............................................................................................................................................................. 17 7.5.4. 驱动器和接收器功能表 ................................................................................................................................ 17
简介沟通代表了自我和他人的同时体验(Shepherd,2006)。作为人类,我们在与人类同行处理非语言信息的能力以及通过这些经验与他人建立联系的愿望是独一无二的。交流学者主要通过塑造和产生这种同时的自我和其他人的经验来集中于这种创造或意义的组装。特别是,非语言交流促进了人际交流中传达的很大一部分意义(Burgoon等,2011)。非语言行为可以帮助进行对话转折(Duncan and Fiske,2015; Wiemann and Knapp,1975),传达我们的感受(App等,2011)和预性(Woodall and Burgoon,1981)。从某种意义上说,非语言行为对于我们解释与人类互动的意义的过程至关重要(Burgoon,1994)。此外,尽管非言语构成了人类与人类互动中传达的很大一部分,但非语言行为本身并不能代表我们解释信息的全部图片。单个非语言手势可以具有多种含义,因此需要语言语音(Burgoon and Bacue,2003)。除了面对面的互动之外,机器通常被认为是进行通讯的媒介。例如,文本消息传递或使用所有帽子中的表情符号可以代表计算机介导的通信中的非语言行为。作为通信研究的关注点的重要领域,计算机介导的沟通试图通过使用机器的使用来揭示沟通实践,这是在跨性交交流中观察到的一些人类非语言行为(Walther,1992)。
连接设备在输入和输出电池之间连接。电池的加(+)和负( - )连接必须连接到输入和输出侧的相应端子。请注意极地!调整电位计后,可以连接输出侧的电池。端子描述输入电池的负端子( - )+输出电池的正端子(+)超出端子(+)超出输出电池的负端子( - )无向量EN启用信号,以激活备用备用收键式倒置Pro倒置信号(例如d+信号)用于禁用待机式吊销Pro(可选)连接电缆应具有1mm²至4mm²的电缆横截面(请参阅表1),并且必须根据电缆横截面的规定保护超载(电缆火),例如。保险丝10 A.要永久激活备用范围,可以将跳线从in+连接到en。或者,可以将可切换的12 V控制信号应用于EN终端,以打开待机 - 关节pro。如果应在交流发电机充电时停用待机功能Pro,则可以选择将交流发电机的D+信号连接到DIS端子。
在 SouthBay,我们生产定制医疗和半导体部件。作为一家重要的硅谷公司,我们需要最好的产品来确保员工安全,公司保持有效运营。Covid-19 带来了一些重大挑战,mAIrobotics 是一家轻松赢得我们业务的公司。确保每个人的体温合格是绝对的要求,但确保每天每个班次的每个人的体温良好需要花费太多时间和精力。在评估了几种产品后,mAIrobotics 显然是赢家。他们不仅拥有一款能够准确高效地捕获温度的出色产品;能够立即从任何浏览器在 Google Cloud 上安全地查看和操作记录是一种非常好的体验。界面快速、流畅、安全、现代且摩擦通常很低,就像我们对正确的 UI/UX 设计所期望的那样。但真正让我们折服的是始终如一、快速的客户服务,它满足了我们的所有需求,确保产品满足了我们想要的一切。mAIrobotics 是一个轻松的选择,它让我们的生活变得更好。谢谢 mAIrobotics!
热电联产 (CHP) 系统发电并利用发电产生的热能进行加热和冷却应用(通常燃烧天然气 1 发电并捕获废气以产生蒸汽热)。2 结合这两个过程意味着一些 CHP 系统可以实现 60-80% 的热效率,是传统发电效率的两倍。3 人们越来越认识到 CHP 是一种高效且有弹性的资源,可以作为通往零碳排放未来的桥梁。4 随着人们对 CHP 的兴趣日益浓厚,各州都在探索消除障碍或鼓励其部署的方法,人们认识到,任何认真推广 CHP 的努力都必须在公平、基于成本的备用费率设计方法的背景下进行。当备用费率过高、不灵活、不可预测或客户难以适应时,这些强加给客户的额外成本意味着 CHP 系统的经济效益将无法提供所需的投资回报,潜在项目将无法成功。
已广泛研究了系统可靠性,以确保系统的安全和操作。保持高性能或可用性的性能通常是必不可少的,而冗余是一种有效的技术,它是方便的操作和短时间内的。冗余方法已在各种关键基础架构中用于提高系统可靠性[13,35,43,45]。转换开关在冗余系统中起重要作用。开关故障即使系统元素正在运行,也可以影响系统的可靠性。因此,已经在系统中考虑了不完善的转换开关,并且已经由许多学者研究[17,34,36]。温暖的待机是提高应用程序可靠性的实际冗余技术之一。基于概率理论的温暖待机系统的可靠性分析已被许多学者(例如她和Pecht [32],Li等人)广泛研究。[19],Yuan和Meng [40],依此类推。尽管事实证明概率理论对系统可靠性分析有效,但我们需要长期累积频率才能近似实际值,以估算元素寿命的概率分布,这意味着统计数据需要大量观察数据。实际上,由于技术或经济的困难,我们通常无法准确获得完整的数据。使用概率理论处理系统可靠性存在局限性。在1965年,扎德[41]提出了模糊理论,并定义了一些模糊集的概念。在1975年,考夫曼[15]将模糊理论引入了可靠性工程。模糊理论在理论和工程学中都有一般应用。例如,模糊系统的可靠性[12,14,16,31],图片模糊编号[2],模糊软图[3],模糊逻辑关系[20]等。尽管概率理论和模糊理论已广泛应用于可靠性分析中,但刘[22]声称某种不确定性既不是随机性也不是模糊性。为了处理人类的不确定性现象,不确定性理论于2007年建立[22],并于2010年对其进行了重新构建[24]。如今,不确定性理论已应用于不同的领域,例如不确定的可靠性分析[8、11、28、37、42、44、46],不确定的优化[38],不确定图[21],不确定的积分[39],不确定的[39],不确定的序列[5]等。
• EMCP 3.1(标准) • EMCP 3.2 / EMCP 3.3(选配) • 单一位置客户连接点 • 真 RMS 交流电计量,3 相 • 控制 - 运行 / 自动 / 停止控制 - 速度调节 - 电压调节 - 紧急停止按钮 - 发动机循环启动 • 数字指示: - RPM - 运行小时数 - 油压 - 冷却液温度 - 系统直流电压 - L-L 电压、L-N 电压、相安培、Hz - ekW、kVA、kVAR、kWhr、%kW、PF(EMCP 3.2 / 3.3) • 带有公共指示灯的停机: - 油压低 - 冷却液温度高 - 冷却液液位低 - 超速 - 紧急停止 - 启动失败(启动过度) • 可编程保护继电器功能:(EMCP 3.2 和 3.3) - 欠压和过压 - 欠频和过频 - 过流(定时和反时限) - 逆功率(EMCP 3.3) • MODBUS 隔离数据链路,RS-485 半双工 (EMCP 3.2 & 3.3) • 选项 - 防破坏门 - 本地报警器模块 - 远程报警器模块 - 输入 / 输出模块 - RTD / 热电偶模块 - 监控软件
符合或超过国际规范:· AS1359、CSA、IEC60034、ISO3046、ISO8528、NEMA MG 1-33、UL508A、98/37/EC 燃油率基于 35º API(16º C 或 60º F)比重的燃油,在 29º C (85º F) 下使用时,其 LHV 为 42 780 kJ/kg(18,390 Btu/lb),重量为 838.9 克/升(7.001 磅/美国加仑)。排放数据测量程序与 EPA CFR 40 第 89 部分 D 和 E 子部分以及 ISO8178-1 中描述的用于测量 HC、CO、PM 和 NOx 的程序一致。所示数据基于稳定状态运行条件,即 77ºF、28.42 HG 和 2 号柴油,API 为 35º,LHV 为 18,390 btu/lb。所示标称排放数据受仪器、测量、设施和发动机间差异的影响。排放数据基于 100% 负载,因此不能用于比较使用基于加权循环的值的 EPA 法规。